The truth is, that the colours of all, or almost all, known blue and yellow pigments happen to be composite. An ordinary blue paint reflects not only blue light, but a large quantity of green as well; while an ordinary yellow paint reflects a large quantity of green light in addition to yellow. When such paints are mixed together, the blue and yellow hues neutralise one another, and only the green, which is common to both, remains.

The spectrum apparatus will make this clearer. Hold a piece of bright blue glass before the slit; the light passing through the glass will be analysed by the prism, and you will see that it really contains almost as much green as blue. If a yellow glass is substituted, not only will yellow light be transmitted, but, as before, a considerable quantity of green. If now both glasses be placed together before the slit, what will happen? The yellow glass will stop the blue light transmitted by the blue glass, the blue glass will stop the yellow light transmitted by the yellow glass, and only the green light which both glasses have the power of transmitting will pass through unimpeded, forming a band of pure green colour upon the screen.

The combination of simple blue and yellow lights of suitable relative luminosities results in the formation of white or neutral light. If the blue is a little in excess, the combined light will be of a bluish tint; if the yellow is in excess, the combination will have a yellowish tint. It will never contain any trace of green. The combination of simple spectral blue and yellow is easily effected by the colour-patch apparatus, and the result will be found to bear out what has been said.

Since, then, no mixture of red, yellow, and blue, or of any two of them, will produce green, we cannot regard these colours as being, in Brewster’s sense of the term, primary ones.

But it is quite possible to find a group of three different hues—and indeed many such groups—which when made to act upon the eye simultaneously and in the right proportions can give rise to the sensation of any colour whatever. Now this experimental fact is obviously suggestive of a possible converse, namely, that almost every colour sensation may in reality be a compound one, the resultant of not more than three simple sensations. Assuming this to be so, it is evident that if each elementary area of the retina were provided with only three suitable colour organs, nothing more would be requisite for the perception of an indefinite number of distinct colours.

Such a hypothesis was first proposed by Thomas Young at the beginning of the present century; but it came before its time and met with no attention until fifty years later, when it was unearthed by the distinguished physicist and physiologist, Helmholtz, who accorded to it his powerful support and modified it in one or two important details.

Fig. 6.—Helmholtz’s Curves of Colour Perception.

According to the Young-Helmholtz theory, as it is now called, there are three different kinds of nerve-fibres distributed over the retina. The first, when separately stimulated, produce the sensation of red, the second that of green, and the third that of violet. Light having the same wave-length as the extreme red rays of the spectrum stimulates the red nerve-fibres only; that having the same wave-length as the extreme violet rays stimulates the violet nerve-fibres only. Light of all intermediate wave-lengths, corresponding to the orange, yellow, green, and blue of the spectrum, stimulates all three sets of nerve-fibres at once, but in different degrees. The proportionate stimulation of the red, green, and violet nerves throughout the spectrum is indicated in [Fig. 6], which is derived from the rough sketch first given by Helmholtz. The yellow rays of the spectrum, it will be seen, excite the red and green nerves strongly, and the violet feebly; green light excites the green nerves strongly, and the red and violet moderately; while blue light excites the green and violet nerves strongly, and the red feebly.