Youthful impressions are, however, strong and not easily effaced. I could not, in spite of every protest of my reason, banish from my thoughts that first inquiry and its occasion; and so it happened that, half without intending it, in many a leisure hour the youthful project was taken up again, the difficulties and the means of vanquishing them were weighed,—and yet not the first step towards an experiment taken.

How could a single instrument reproduce, at once, the total actions of all the organs operated in human speech? This was ever the cardinal question. At last I came by accident to put the question in another way: How does our ear take cognizance of the total vibrations of all the simultaneously operant organs of speech? Or, to put it more generally: How do we perceive the vibrations of several bodies emitting sounds simultaneously?

In order to answer this question, we will next see what must happen in order that we may perceive a single tone.

Apart from our ear, every tone is nothing more than the condensation and rarefaction of a body repeated several times in a second (at least seven to eight times[15]). If this occurs in the same medium (the air) as that with which we are surrounded, then the membrane of our ear will be compressed toward the drum-cavity by every condensation, so that in the succeeding rarefaction it moves back in the opposite direction. These vibrations occasion a lifting-up and a falling-down of the “hammer” [malleus bone] upon the “anvil” [incus bone] with the same velocity, or, according to others, occasion an approach and a recession of the atoms of the auditory ossicles, and give rise, therefore, to exactly the same number of concussions in the fluid of the cochlæa, in which the auditory nerve and its terminals are spread out. The greater the condensation of the sound-conducting medium at any given moment, the greater will be the amplitude of vibration of the membrane and of the “hammer,” and the more powerful, therefore, the blow on the “anvil” and the concussion of the nerves through the intermediary action of the fluid.

The function of the organs of hearing, therefore, is to impart faithfully to the auditory nerve, every condensation and rarefaction occurring in the surrounding medium. The function of the auditory nerve is to bring to our consciousness the vibrations of matter resulting at the given time, both according to their number and their magnitude. Here, first, certain combinations acquire a distinct name: here, first the vibrations become musical tones or discords (Misstöne).

That which is perceived by the auditory nerve, is, therefore, merely the action of a force affecting our consciousness, and as such may be represented graphically, according to its duration and magnitude, by a curve.

Fig. 24.