[Translated from the Journal of the Austro-German Telegraph Society (edited by Dr. Brix), vol. ix. p. 125, 1862. (Zeitschrift des deutschösterreichischen Telegraphen-Vereins, 1862.)]

It might not be uninteresting to make known to wider circles the following ideas concerning the reproduction of tones in an electro-galvanic way, which have recently been put forward by Herr Philipp Reiss [sic] of Friedrichsdorf, before the Physical Society, and before the meetings of the Free German Institute (Freies Deutsches Hochstift) in Frankfort-on-the-Main; also to state what has hitherto been attained in the realisation of this project, in order that building upon the collected experiences and the efficacy of the galvanic current, what has already been made serviceable to the human intellect for the advancement of its correspondence, may in this respect also be turned to profit.

In what is here announced we are concerned not with the action of the galvanic current in moving telegraphic apparatus of whatever construction for producing visible signals, but with its application for the production of audible signals—of tones!

The air-waves, which by their action within our ears awaken in us the sensation of sound, by first of all setting the drum-skin into a vibrating motion, are thence, as is known, conveyed to the inner part of the ear and to the auditory nerves lying there by a lever apparatus of the most marvellous fineness,—the auditory ossicles (including “Hammer,” “Anvil,” and “Stirrup”). The experiment for the reproduction of tones is based upon the following: viz. to employ an artificial imitation of this lever-apparatus and to set it in motion by the vibrations of a membrane like the drum-skin in the ear, and thus to open and close a galvanic circuit which is united by a metallic conductor with a distant station.

Before the description of the necessary apparatus is followed out, it might be necessary, however, to go back to the point how our ear perceives the vibrations of a given tone, and the total vibrations of all the tones simultaneously acting upon it; because by this means will be determined the various requisite conditions which must be fulfilled by the transmitting and receiving apparatus for the solution of the problem that has been set.

Let us consider first the processes which take place in order that a single tone should be perceived by the human ear; so shall we find that each tone is the result of a condensation and rarefaction several times repeated in a certain period of time. If this process is going on in the same medium (the air) in which our ear is situated, the membrane will at every condensation be forced toward the hollow of the drum, and at every rarefaction will move itself in the opposite direction.

These vibrations necessitate a similar motion of the auditory ossicles, and thereby a transference to the auditory nerves is effected.

The greater the condensation of a sound-conducting medium at any given moment, the greater also will be the amplitude of vibration of the membrane and of the auditory ossicles and of their action; and in the converse case the action will be proportionally less. It is, therefore, the function of the organs of hearing to communicate with fidelity to the auditory nerves every condensation and rarefaction occurring in the surrounding medium; whilst it remains to be the function of the auditory nerves to bring to our consciousness the number as well as the magnitude of the vibrations ensuing in a given time.

Here in our consciousness a definite name is given to a certain composition, and here the vibrations brought to the consciousness become “tones.”

That which is perceived by our auditory nerves is consequently the effect upon our consciousness of a force which, according to its duration and magnitude, may for the sake of better comprehension, be exhibited graphically.