Any one who compares together the many different forms of Reis’s Transmitters cannot fail to notice that amidst the great variety of form, two essential points are preserved throughout, the presence of which is fundamental. These two essentials are, firstly, the tympanum to collect the voice-waves, and, secondly, an electric mechanism, consisting of two or more parts in loose or imperfect contact with each other, and so arranged in combination with the tympanum that the motions of the latter should alter the degree of contact, and consequently interrupt, to a greater or less degree, the current of electricity flowing between the contact-pieces. It was of course familiar to all electricians, long before Reis, that a bad, or imperfect, or loose contact in a circuit offered a resistance and interrupted the flow of an electric current. In all ordinary telegraphic and electric apparatus great care was taken to avoid loose and imperfect contacts by using clamping-screws and solid connectors. But Reis, having made up his mind (see p. 77) that the action due to the magnetising current must vary in a manner corresponding with, and therefore proportional to, the vibrations of the voice, utilised this property of imperfect contacts which alter their resistance according to the degree of contact, by arranging his mechanism so as to apply the voice to vary the degree of contact. This was the essence of his transmitters. In other words, he applied the voice to control or moderate the strength of the current generated by a battery. His “interruptors” may therefore with propriety be called “electric current contact regulators;” and put into technical language, the essence of this part of his invention lay in the combination with a tympanum of electric current regulators working upon the principle of variable contact.

In another appendix is discussed the precise nature of that which occurs at a point of variable or imperfect contact, and which results in a corresponding change of electrical resistance when the degree of contact is varied. Suffice it to say here that it is impossible to vary the degree of contact between two bodies which are lightly pressing one against the other, and through which an electric current is flowing, without altering the resistance offered to the current by this joint in the circuit. If the two surfaces are pressed together, so that there is a good contact, the current flows more freely, finding less resistance. If, on the other hand, by altering the pressure or the amount of surface exposed, we change the degree of contact and cause fewer atoms of one piece to touch those of the other piece, the current meets with greater obstruction and cannot flow with such strength as before: it is partially “interrupted,” to use the expressive term employed by Reis.

Now this operation of varying the degree of pressure in order to vary the resistance of the interrupter or contact regulator, was distinctly contemplated by Reis. We find his definite instructions, for example (see p. 75), for arranging the relative lengths of the two parts of the curved lever in one of his transmitters, so that the movement of one contact-piece may act on the other contact-piece with the greatest possible force; in other words, he shortened his lever at the working end, sacrificing its range of motion in order to get a greater range of pressure at the contact-point.

It has often been said, but incorrectly, that Reis intended his “interruptors” or contact regulators to make and break the electric circuit abruptly in the manner of a telegraphic key worked by hand. No doubt in the mouth of a professional telegraph operator the words “interrupting” the circuit, and “opening” and “closing” the circuit, do now-a-days receive this narrow technical meaning. But Reis was not a professional telegraph operator: he did not (see p. 87) even know the signals of the Morse code, and it is self-evident that he did not use the terms in any such restricted or unnatural sense as abrupt “make-and-break,” because he proposed at the outset to interrupt the current in a manner represented by the gradual rise and fall of a curve, stating emphatically in his very first memoir on telephony (p. 55), that to reproduce any tone or combination of tones all that was necessary was “to set up vibrations whose curves are like those” of the given tone or combination of tones. Moreover, in the construction of almost all his transmitters, even in the very first—the model of the human ear—he purposely introduced certain parts which could have no other effect than to prevent the occurrence of complete breaks in the continuity of the current. In fact, instead of using rigid supports for his interruptor, he mounted one or both of the contact-parts with springs, so that one should follow the movement of the other with a gentle pressure never amounting to absolute break, except perhaps in the accidental case of a too loud shout. By employing these following-springs, he introduced, in fact the element of elasticity into his interruptor; and clearly he introduced it for the very purpose of avoiding abrupt breaking of the contact. In the first form Fig. [5], p. 16 (the “ear”), there was one spring; in the fourth form, Figs. [9] and [10], p. 21 (the “bored block”), there were two springs, one of steel, curved, and one, a straight but springy strip, of copper; in the eighth form (the “lever” form), [Fig. 14], p. 25, there were two springs; in the ninth form, [Fig. 15], p. 26, there was a springy strip of brass. In the final form, Figs. [17] and [18], p. 27 (the “square-box” pattern), there was, it is true, a springy strip of copper, but the light adjustment of contact was in this form obtained, not by a spring, but by the inertia of the upper contact-piece which by its own weight pressed gently upon the lower contact-piece. In every one of these forms, except the last, there was moreover an adjusting-screw to determine the exact degree of initial pressure between the contact surfaces. Doubtless the difficulty of adjusting this screw to give the exact degree of contact, enhanced as that difficulty was in consequence of the liability of the membraneous tympanum to become flaccid by the moisture of the breath, induced Reis to think that the later form of the apparatus in which this adjustment was no longer retained would be more easy to use, or, as he says in his Prospectus, more accessible to others. Yet undoubtedly the absence of the spring at the contacts led some persons to fancy that the instrument was intended to be shouted or sung to so loudly that every vibration should make the upper contact-piece jump up from the lower, and as Professor Müller even suggests (p. 98), produce a spark! But such a manner of using the instrument would entirely defeat Reis’s most fundamental principle, that the interruptions should be such as to correspond to the undulating curve which represents the pressure due to vibration of the sound-wave; the possibility of representing the degree of pressure by a curve being one of the two principles set forth in his paper “on Telephony” (p. 55), in which he remarks, that “Taking my stand on the preceding principles, I have succeeded in constructing an apparatus by means of which I am in a position to reproduce ... even to a certain degree the human voice.” Reis was perfectly well aware, as his curves show, that a complicated sound-wave does not consist invariably of one condensation followed by one rarefaction, but that there are all sorts of degrees of condensation which may follow one another, and all capable of being represented by a curve. If all sounds consisted of one rarefaction following immediately after each one condensation there might be some propriety in proposing that after each “make” of contact there should be a “break” in the sense of an abrupt or complete breach in the continuity of the current. But, obviously, the fact that one condensation may follow another without a rarefaction between (which Reis’s curves show that he knew) must be amply sufficient to prove that on Reis’s own principle his interruptor was meant to produce variations in the degree of contact in exact correspondence with the variations in the degree of pressure, whatever these might be. Had he not meant this, he could not have talked about “taking his stand” on the principle of representing varying pressures by an undulatory curve. Now, from what has been adduced, the following points are clear:—

Firstly, that the contact-regulator which Reis combined with the tympanum was meant to interrupt the current, more or less, according to the varying movements imparted to it by the voice.

Secondly, that Reis intended such interruptions or variations of contact to be proportional to, or to “correspond” with, the variations indicated by the undulatory curve of varying pressures.

Thirdly, that for the purpose of preventing the occurrence of abrupt breaks in the continuity of the circuit, he used springs and adjusting screws, and in one form availed himself of the inertia of the moving parts to attain a similar end.

It is also clear from his own prospectus, that he was aware that for the simpler and ruder purpose of transmitting musical airs, in which the number of the vibrations is the only consideration and where each single condensation is actually followed by a rarefaction, actual abrupt breaks in the continuity of the circuit are admissible. Reis chose this simple case as the one capable of being readily grasped by a general audience, though it was obviously only a partial explanation of the action of the apparatus in the simplest case that could be presented.


Turning now to some of the more modern transmitters, we will inquire how far Reis’s fundamental principles are involved in their construction. We will first take Berliner’s transmitter, of which [Fig. 43] is a drawing, reproduced from the sketch in the specification of his British Patent. This transmitter consists of a tympanum of thin metal to collect the sound-waves, and behind it is attached an interrupter or current regulator, identical in almost every respect with that of Reis. One of the contact-pieces, marked E, circular in form, is fixed to the centre of the tympanum, and vibrates with it, precisely as in Reis’s latest, and in some also of his earlier instruments. Against this there rests in light contact a second contact-piece, in the form of a small blunt spike, F, screwed into a short arm, loosely jointed to the part N, where the circuit is connected. As in Reis’s latest transmitter ([Fig. 17], p. 27), so here, the contact-pieces are kept in contact by gravity. When any person talks to the tympanum it vibrates, and, as a result, the degree of contact between the two surfaces is varied, resulting in a greater or less interruption of the current, the inertia of the upper contact-piece, serving to prevent complete abrupt “break” of the circuit, except under unusually strong vibrations. In fact, if the speaker talks too loudly when speaking into Berliner’s transmitter, he will cause abrupt breaks to occur instead of partial interruptions; and a rattling noise comes in to confuse the speech at the receiving end of the line. But this is precisely what occurs in a Reis’s transmitter if one talks too loudly to it. It is obvious that if Berliner’s transmitter is a “make-and-break” instrument, so is Reis’s, because the principle of action is identical: and it is also obvious that if Berliner’s instrument is capable of varying the resistance at the contact-points by interrupting the current in a manner corresponding to the pressures of the air in the sound-waves, so also is Reis’s instrument.