The numerous experiments which Reis made, and the many forms of instruments which he devised, prove his conviction of the importance of his invention to have been very deeply rooted. He had indeed penetrated to the very soul of the matter. He did not confine himself to one kind of tympanum, he tried many, now of bladder, now of collodion, now of isinglass, and now of thin metal. He varied the forms of his instruments in many ways, introducing the element of elasticity by springs and adjusting-screws. Though he chiefly employed one metal for his contact-pieces, he did not limit himself to that one, but left us to infer that the principle of variable contact was applicable to any good conductor, metallic or non-metallic. He knew better, indeed, than to limit himself in any such fashion; better, indeed, than some of the eminent persons who are now so willing to ignore his claims. Modern practice has taught us to improve the tympanum part of Reis’s invention, and to obviate the inconveniences to which a membrane is liable: in that part we have gone beyond Reis. But in the question of contact-points for opening and closing the circuit in correspondence with the vibrations, we are only beginning to find how much Reis was a-head of us. We have been thrown off the track—blinded perhaps—by the false trail of the “semi-conductor” fallacy, or by the arbitrary and unnatural twist that has been given by telegraphists to Reis’s expression, “opening and closing the circuit,” forgetting that he practically told us that this operation was to be proportional to, “in correspondence with,” the undulations of the tympanum. When we succeed in freeing ourselves from the dominance of these later ideas, we shall see how much we still have to learn from Philipp Reis, and how fully and completely he had grasped the problem of the Telephone.
APPENDIX III.
Comparison of Reis’s Receivers with Recent Instruments.
The receivers invented by Reis for the purpose of reconverting into audible mechanical vibrations the varying electric currents transmitted from the speaking end of the line were of two classes, viz.:
(1.) Those in which the magnetic expansion and contraction of a rod of steel or iron, under the influence of the varying current, set up mechanical vibrations and communicated them to a sound-board.
(2.) Those in which the current by passing round the coils of an electro-magnet caused the latter to vary the force with which it attracted its armature, and threw the latter into corresponding mechanical vibrations.
The first of these principles is embodied in the “knitting-needle” receiver described above and depicted in figures 22 & 23 on page 33. This receiver differs wholly from the later instruments of Bell, and others, and depended for its action upon the phenomenon of magnetic expansion discovered by Page and investigated by Joule. It was well known before Reis’s time that when a needle or bar of iron was magnetised it grew longer, and when demagnetised it grew shorter. Page detected the fact by the “tick” emitted by the bar during the act of magnetisation or demagnetisation. Joule measured the amount of expansion and contraction. To these discoveries Reis added two new facts; first, that if the degree of magnetisation be varied with rapid fluctuations corresponding to those of the sound waves impressed on the transmitter, the expansion and contraction of the rod followed these fluctuations faithfully, and therefore emitted at the receiving end sounds similar to those uttered at the transmitter. Secondly, by employing a needle of steel instead of the bar of iron used by Page, Reis obtained an instrument which once used could never become completely demagnetised on the cessation of the current; it was thenceforth a permanent magnet, and all that the fluctuating currents could do was to vary its degree of magnetisation. Reis carefully explained in his memoir “On Telephony,” how the frequency of such fluctuations in the magnetising current could act in reproducing the pitch, and further, how the amplitude of the fluctuations set up vibrations of corresponding amplitude in the rod: he added with significance, that the quality of the reproduced note depended upon a number of variations of amplitude occurring in a given time. His theory of these actions was that the atoms (or perhaps our modern word molecules would more correctly represent what Reis spoke of as atoms) of the rod or needle were pushed asunder from one another in the act of magnetisation, and that on the cessation of the magnetising influence of the current, these same atoms strove to return to their previous position of equilibrium, and thus the oscillations of the atoms led to the vibration of the needle as a whole. Whether all Reis’s speculations as to the behaviour of the atoms under varying degrees of magnetising force are justified in the present aspect of science or not, is, however, not of any great importance; the important point is, that, whether his theory be right or wrong, the instrument he devised will perform the function he assigned to it: it will reproduce speech, not loudly, but in reality far more articulately than many of the telephonic receivers in use under the names of Bell, Gower-Bell, &c.
One very curious point in connection with this “knitting-needle” receiver of Reis, is its extremely bad acoustical arrangements. It was laid horizontally upon a small sounding-box covered by a lid. If the end of the needle had been made to press on the resonant-board (as indeed appears to have been done at first with the violin, p. 29) the vibrations would have been much more directly reinforced. But when merely supported by two wooden bridges the direct communication was largely lost. The pressure of the lid downwards upon the spiral, as recommended by Reis, is no doubt an important matter acoustically. It is strange that a man who had grappled in so masterly a way with the acoustical problem of the transmitter, and had solved it by constructing that transmitter on the lines of the human ear, should not have followed out to the same extent those very same principles in the construction of his receiver. An extended surface he did employ, in the shape of a sounding-board; but it was not applied in the very best manner in this instrument.
The second principle applied by Reis in the construction of his telephone-receivers, was that of the electro-magnet. He arranged an electro-magnet so that the fluctuating currents passing round the coils set up corresponding variations in the degree of force with which it attracted its armature of iron, and so forced the latter to execute corresponding mechanical vibrations. This principle is common both to the receiver of Reis, and to the later receivers of Yeates, Bell, and Edison. Reis’s armature was an iron bar of oval section; Yeates’s an iron strip screwed to a sound-board, Bell’s was an iron plate, and Edison’s an iron plate also.