He paused and puffed at his pipe, his eyes fixed on the snowy peaks far in the purple distance. Manning waited.

"Finally the rod came out,” Russ went on. “Mind you, it came out, even after I would have sworn, if I had relied alone upon my eyes, that it hadn't entered the sphere at all. But it came out ninety degrees removed from its point of entry!"

"Wait a second,” said Manning. “This doesn't check. Did you do it more than once?"

"I did it a dozen times and the results were the same each time. But you haven't heard the half of it. When I pulled that rod out-yes, I could pull it out-it was a good two inches shorter than when I had pushed it in. I couldn't believe that part of it. It was even harder to believe than that the rod should come out ninety degrees from its point of entry. I measured the rods after that and made sure. Kept an accurate record. Every single one of them lost approximately two inches by being shoved into the sphere. Every single one of them repeated the phenomenon of curving within the sphere to come out somewhere else than where I had inserted them."

"ANY explanation of it?” asked Manning, and now there was a cold chill of excitement in his voice.

"Theories, no real explanations. Remember that you can't see the rod after you push it into the sphere. It's just as if it isn't there. Well, maybe it isn't. You can't disturb anything within that sphere or you'd change the sum of potential-kinetic-pressure energies within it. The sphere seems dedicated to that one thing… it cannot change. If the rod struck the imperm wire within the field, it would press the wire down, would use up energy, decrease the potential energy. So the rod simply had to miss it somehow. I believe it moved into some higher plane of existence and went around. And in doing that it had to turn so many corners, so many fourth-dimensional corners, that the length was used up. Or maybe it was increased in density. I'm not sure. Perhaps no one will ever know."

"Why didn't you tell me about this sooner?” demanded Manning. “I should have been out here helping you. Maybe I wouldn't be much good, but I might have helped."

"You'll have your chance,” Russ told him. “We're just starting. I wanted to be sure I had something before I troubled you. I tried other things with that first sphere. I found that metal pushed through the sphere will conduct an electrical current, which is pretty definite proof that the metal isn't within the sphere at all. Glass can be forced through it without breaking. Not flexible glass, but rods of plain old brittle glass. It turns without breaking, and it also loses some of its length. Water can be forced through a tube inserted in the sphere, but only when terrific pressure is applied. What that proves I can't even begin to guess."

"You said you experimented on the first sphere,” said Manning. “Have you made others?"

Russ rose from his chair.