IV

THE EXTENT OF THE UNIVERSE

We cannot expect that the wisest men of our remotest posterity, who can base their conclusions upon thousands of years of accurate observation, will reach a decision on this subject without some measure of reserve. Such being the case, it might appear the dictate of wisdom to leave its consideration to some future age, when it may be taken up with better means of information than we now possess. But the question is one which will refuse to be postponed so long as the propensity to think of the possibilities of creation is characteristic of our race. The issue is not whether we shall ignore the question altogether, like Eve in the presence of Raphael; but whether in studying it we shall confine our speculations within the limits set by sound scientific reasoning. Essaying to do this, I invite the reader's attention to what science may suggest, admitting in advance that the sphere of exact knowledge is small compared with the possibilities of creation, and that outside this sphere we can state only more or less probable conclusions.

The reader who desires to approach this subject in the most receptive spirit should begin his study by betaking himself on a clear, moonless evening, when he has no earthly concern to disturb the serenity of his thoughts, to some point where he can lie on his back on bench or roof, and scan the whole vault of heaven at one view. He can do this with the greatest pleasure and profit in late summer or autumn—winter would do equally well were it possible for the mind to rise so far above bodily conditions that the question of temperature should not enter. The thinking man who does this under circumstances most favorable for calm thought will form a new conception of the wonder of the universe. If summer or autumn be chosen, the stupendous arch of the Milky Way will pass near the zenith, and the constellation Lyra, led by its beautiful blue Vega of the first magnitude, may be not very far from that point. South of it will be seen the constellation Aquila, marked by the bright Altair, between two smaller but conspicuous stars. The bright Arcturus will be somewhere in the west, and, if the observation is not made too early in the season, Aldebaran will be seen somewhere in the east. When attention is concentrated on the scene the thousands of stars on each side of the Milky Way will fill the mind with the consciousness of a stupendous and all-embracing frame, beside which all human affairs sink into insignificance. A new idea will be formed of such a well-known fact of astronomy as the motion of the solar system in space, by reflecting that, during all human history, the sun, carrying the earth with it, has been flying towards a region in or just south of the constellation Lyra, with a speed beyond all that art can produce on earth, without producing any change apparent to ordinary vision in the aspect of the constellation. Not only Lyra and Aquila, but every one of the thousand stars which form the framework of the sky, were seen by our earliest ancestors just as we see them now. Bodily rest may be obtained at any time by ceasing from our labors, and weary systems may find nerve rest at any summer resort; but I know of no way in which complete rest can be obtained for the weary soul—in which the mind can be so entirely relieved of the burden of all human anxiety—as by the contemplation of the spectacle presented by the starry heavens under the conditions just described. As we make a feeble attempt to learn what science can tell us about the structure of this starry frame, I hope the reader will allow me to at least fancy him contemplating it in this way.

The first question which may suggest itself to the inquiring reader is: How is it possible by any methods of observation yet known to the astronomer to learn anything about the universe as a whole? We may commence by answering this question in a somewhat comprehensive way. It is possible only because the universe, vast though it is, shows certain characteristics of a unified and bounded whole. It is not a chaos, it is not even a collection of things, each of which came into existence in its own separate way. If it were, there would be nothing in common between two widely separate regions of the universe. But, as a matter of fact, science shows unity in the whole structure, and diversity only in details. The Milky Way itself will be seen by the most ordinary observer to form a single structure. This structure is, in some sort, the foundation on which the universe is built. It is a girdle which seems to span the whole of creation, so far as our telescopes have yet enabled us to determine what creation is; and yet it has elements of similarity in all its parts. What has yet more significance, it is in some respects unlike those parts of the universe which lie without it, and even unlike those which lie in that central region within it where our system is now situated. The minute stars, individually far beyond the limit of visibility to the naked eye, which form its cloudlike agglomerations, are found to be mostly bluer in color, from one extreme to the other, than the general average of the stars which make up the rest of the universe.

In the preceding essay on the structure of the universe, we have pointed out several features of the universe showing the unity of the whole. We shall now bring together these and other features with a view of showing their relation to the question of the extent of the universe.

The Milky Way being in a certain sense the foundation on which the whole system is constructed, we have first to notice the symmetry of the whole. This is seen in the fact that a certain resemblance is found in any two opposite regions of the sky, no matter where we choose them. If we take them in the Milky Way, the stars are more numerous than elsewhere; if we take opposite regions in or near the Milky Way, we shall find more stars in both of them than elsewhere; if we take them in the region anywhere around the poles of the Milky Way, we shall find fewer stars, but they will be equally numerous in each of the two regions. We infer from this that whatever cause determined the number of the stars in space was of the same nature in every two antipodal regions of the heavens.

Another unity marked with yet more precision is seen in the chemical elements of which stars are composed. We know that the sun is composed of the same elements which we find on the earth and into which we resolve compounds in our laboratories. These same elements are found in the most distant stars. It is true that some of these bodies seem to contain elements which we do not find on earth. But as these unknown elements are scattered from one extreme of the universe to the other, they only serve still further to enforce the unity which runs through the whole. The nebulae are composed, in part at least, of forms of matter dissimilar to any with which we are acquainted. But, different though they may be, they are alike in their general character throughout the whole field we are considering. Even in such a feature as the proper motions of the stars, the same unity is seen. The reader doubtless knows that each of these objects is flying through space on its own course with a speed comparable with that of the earth around the sun. These speeds range from the smallest limit up to more than one hundred miles a second. Such diversity might seem to detract from the unity of the whole; but when we seek to learn something definite by taking their average, we find this average to be, so far as can yet be determined, much the same in opposite regions of the universe. Quite recently it has become probable that a certain class of very bright stars known as Orion stars—because there are many of them in the most brilliant of our constellations—which are scattered along the whole course of the Milky Way, have one and all, in the general average, slower motions than other stars. Here again we have a definable characteristic extending through the universe. In drawing attention to these points of similarity throughout the whole universe, it must not be supposed that we base our conclusions directly upon them. The point they bring out is that the universe is in the nature of an organized system; and it is upon the fact of its being such a system that we are able, by other facts, to reach conclusions as to its structure, extent, and other characteristics.

One of the great problems connected with the universe is that of its possible extent. How far away are the stars? One of the unities which we have described leads at once to the conclusion that the stars must be at very different distances from us; probably the more distant ones are a thousand times as far as the nearest; possibly even farther than this. This conclusion may, in the first place, be based on the fact that the stars seem to be scattered equally throughout those regions of the universe which are not connected with the Milky Way. To illustrate the principle, suppose a farmer to sow a wheat-field of entirely unknown extent with ten bushels of wheat. We visit the field and wish to have some idea of its acreage. We may do this if we know how many grains of wheat there are in the ten bushels. Then we examine a space two or three feet square in any part of the field and count the number of grains in that space. If the wheat is equally scattered over the whole field, we find its extent by the simple rule that the size of the field bears the same proportion to the size of the space in which the count was made that the whole number of grains in the ten bushels sown bears to the number of grains counted. If we find ten grains in a square foot, we know that the number of square feet in the whole field is one-tenth that of the number of grains sown. So it is with the universe of stars. If the latter are sown equally through space, the extent of the space occupied must be proportional to the number of stars which it contains.