He called upon me immediately, and I told him of the recommendations in the last two reports of the superintendent of the observatory. Together we went to see Admiral Sands, who of course took the warmest interest in the movement, and earnestly promoted it on the official side. Mr. Hilgard telegraphed immediately to some leading men of science, who authorized their signatures to a petition. In this paper attention was called to the wants of the observatory, as set forth by the superintendent, and to the eminent ability of the celebrated firm of the Clarks to supply them. The petition was printed and put into the hands of Senator Hamlin for presentation to the Senate only three or four days after the dinner party. The appropriation measure was formally considered by the Committee on Naval Affairs and that on Appropriations, and was adopted in the Senate as an amendment to the naval appropriation bill without opposition. The question then was to get the amendment concurred in by the House of Representatives. The session was near its close, and there was no time to do much work.

Several members of the House Committee on Appropriations were consulted, and the general feeling seemed to be favorable to the amendment. Great, therefore, was our surprise to find the committee recommending that the amendment be not concurred in. To prevent a possible misapprehension, I may remark that the present system of non-concurring in all amendments to an appropriation bill, in order to bring the whole subject into conference, had not then been introduced, so that this action showed a real opposition to the movement. One of the most curious features of the case is that the leader in the opposition was said to be Mr. Washburn, the chairman of the committee, who, not many years later, founded the Washburn Observatory of the University of Wisconsin. There is, I believe, no doubt that his munificence in this direction arose from what he learned about astronomy and telescopes in the present case.

It happened, most fortunately, that the joint committee of conference included Drake of the Senate and Niblack of the House, both earnestly in favor of the measure. The committee recommended concurrence, and the clause authorizing the construction became a law. The price was limited to $50,000, and a sum of $10,000 was appropriated for the first payment.

No sooner were the Clarks consulted than difficulties were found which, for a time, threatened to complicate matters, and perhaps delay the construction. In the first place, our currency was then still on a paper basis. Gold was at a premium of some ten or fifteen per cent., and the Clarks were unwilling to take the contract on any but a gold basis. This, of course, the Government could not do. But the difficulty was obviated through the action of a second one, which equally threatened delay. Mr. L. J. McCormick, of reaping-machine fame, had conceived the idea of getting the largest telescope that could be made. He had commenced negotiations with the firm of Alvan Clark & Sons before we had moved, and entered into a contract while the appropriation was still pending in Congress. If the making of one great telescope was a tedious job, requiring many years for its completion, how could two be made?

I was charged with the duty of negotiating the government contract with the Clarks. I found that the fact of Mr. McCormick's contract being on a gold basis made them willing to accept one from the Government on a currency basis; still they considered that Mr. McCormick had the right of way in the matter of construction, and refused to give precedence to our instrument. On mature consideration, however, the firm reached the conclusion that two instruments could be made almost simultaneously, and Mr. McCormick very generously waived any right he might have had to precedence in the matter.

The question how large an instrument they would undertake was, of course, one of the first to arise. Progress in the size of telescopes had to be made step by step, because it could never be foreseen how soon the limit might be met; and if an attempt were made to exceed it, the result would be not only failure for the instrument, but loss of labor and money by the constructors. The largest refracting telescope which the Clarks had yet constructed was one for the University of Mississippi, which, on the outbreak of the civil war, had come into the possession of the Astronomical Society of Chicago. This would have been the last step, beyond which the firm would not have been willing to go to any great extent, had it not happened that, at this very time, a great telescope had been mounted in England. This was made by Thomas Cooke & Sons of York, for Mr. R. S. Newall of Gateshead on Tyne, England. The Clarks could not, of course, allow themselves to be surpassed or even equaled by a foreign constructor; yet they were averse to going much beyond the Cooke telescope in size. Twenty-six inches aperture was the largest they would undertake. I contended as strongly as I could for a larger telescope than Mr. McCormick's, but they would agree to nothing of the sort,—the supposed right of that gentleman to an instrument of equal size being guarded as completely as if he had been a party to the negotiations. So the contract was duly made for a telescope of twenty-six inches clear aperture.

At that time Cooke and Clark were the only two men who had ever succeeded in making refracting telescopes of the largest size. But in order to exercise their skill, an art equally rare and difficult had to be perfected, that of the glassmaker. Ordinary glass, even ordinary optical glass, would not answer the purpose at all. The two disks, one of crown glass and the other of flint, must be not only of perfect transparency, but absolutely homogeneous through and through, to avoid inequality of refraction, and thus cause all rays passing through them to meet in the same focus. It was only about the beginning of the century that flint disks of more than two or three inches diameter could be made. Even after that, the art was supposed to be a secret in the hands of a Swiss named Guinand, and his family. Looking over the field, the Clarks concluded that the only firm that could be relied on to furnish the glass was that of Chance & Co., of Birmingham, England. So, as soon as the contracts were completed, one of the Clark firm visited England and arranged with Chance & Co. to supply the glass for the two telescopes. The firm failed in a number of trials, but by repeated efforts finally reached success at the end of a year. The glasses were received in December, 1871, and tested in the following month. A year and a half more was required to get the object glasses into perfect shape; then, in the spring or summer of 1873, I visited Cambridge for the purpose of testing the glasses. They were mounted in the yard of the Clark establishment in a temporary tube, so arranged that the glass could be directed to any part of the heavens.

I have had few duties which interested me more than this. The astronomer, in pursuing his work, is not often filled with those emotions which the layman feels when he hears of the wonderful power of the telescope. Not to say anything so harsh as that "familiarity breeds contempt," we must admit that when an operation of any sort becomes a matter of daily business, the sentiments associated with it necessarily become dulled. Now, however, I was filled with the consciousness that I was looking at the stars through the most powerful telescope that had ever been pointed at the heavens, and wondered what mysteries might be unfolded. The night was of the finest, and I remember, sweeping at random, I ran upon what seemed to be a little cluster of stars, so small and faint that it could scarcely have been seen in a smaller instrument, yet so distant that the individual stars eluded even the power of this instrument. What cluster it might have been it was impossible to determine, because the telescope had not the circles and other appliances necessary for fixing the exact location of an object. I could not help the vain longing which one must sometimes feel under such circumstances, to know what beings might live on planets belonging to what, from an earthly point of view, seemed to be a little colony on the border of creation itself.

In his report dated October 9, 1873, Admiral Sands reported the telescope as "nearly completed." The volume of Washington observations showed that the first serious observations made with it, those on the satellites of Neptune, were commenced on November 10 of the same year. Thus, scarcely more than a month elapsed from the time that the telescope was reported still incomplete in the shop of its makers until it was in regular nightly use.

Associated with the early history of the instrument is a chapter of astronomical history which may not only instruct and amuse the public, but relieve the embarrassment of some astronomer of a future generation who, reading the published records, will wonder what became of an important discovery. If the faith of the public in the absolute certainty of all astronomical investigation is thereby impaired, what I have to say will be in the interest of truth; and I have no fear that our science will not stand the shock of the revelation. Of our leading astronomical observers of the present day—of such men as Burnham and Barnard—it may be safely said that when they see a thing it is there. But this cannot always be said of every eminent observer, and here is a most striking example of this fact.