"July 9. This is Saturday evening. Met Major Powell at the Cosmos Club, who told me that they would like to have me look at the air-cooling projects at the White House. Published statement that the physicians desired some way to cool the air of the President's room had brought a crowd of projects and machines of all kinds. Among other things, a Mr. Dorsey had got from New York an air compressor such as is used in the Virginia mines for transferring power, and was erecting machinery enough for a steamship at the east end of the house in order to run it."

Dr. Woodward was a surgeon of the army, who had been on duty at Washington since the civil war, in charge of the Army Medical Museum. Among his varied works here, that in micro-photography, in which he was a pioneer, gave him a wide reputation. His high standing led to his being selected as one of the President's physicians. To him I wrote a note, offering to be of any use I could in the matter of cooling the air of the President's chamber. He promptly replied with a request to visit the place, and see what was being done and what suggestions I could make. Mr. Dorsey's engine at the east end was dispensed with after a long discussion, owing to the noise it would make and the amount of work necessary to its final installation and operation.

Among the problems with which the surgeons had to wrestle was that of locating the ball. The question occurred to me whether it was not possible to do so by the influence produced by the action of a metallic conductor in retarding the motion of a rapidly revolving magnet, but the effect would be so small, and the apparatus to be made so delicate, that I was very doubtful about the matter. If there was any one able to take hold of the project successfully, I knew it would be Alexander Graham Bell, the inventor of the telephone. When I approached him on the subject, he suggested that the idea of locating the ball had also occurred to him, and that he thought the best apparatus for the purpose was a telephonic one which had been recently developed by Mr. Hughes. As there could be no doubt of the superiority of his project, I dropped mine, and he went forward with his. In a few days an opportunity was given him for actually trying it. The result, though rather doubtful, seemed to be that the ball was located where the surgeons supposed it to be. When the autopsy showed that their judgment had been at fault, Mr. Bell admitted his error to Dr. Woodward, adding some suggestion as to its cause. "Expectant attention," was Woodward's reply.

I found in the basement of the house an apparatus which had been brought over by a Mr. Jennings from Baltimore, which was designed to cool the air of dairies or apartments. It consisted of an iron box, two or three feet square, and some five feet long. In this box were suspended cloths, kept cool and damp by the water from melting ice contained in a compartment on top of the box. The air was driven through the box by a blower, and cooled by contact with the wet cloths. But no effect was being produced on the temperature of the room.

One conversant with physics will see one fatal defect in this appliance. The cold of the ice, if I may use so unscientific an expression, went pretty much to waste. The air was in contact, not with the ice, as it should have been, but with ice-water, which had already absorbed the latent heat of melting.

Evidently the air should be passed over the unmelted ice. The question was how much ice would be required to produce the necessary cooling? To settle this, I instituted an experiment. A block of ice was placed in an adjoining room in a current of air with such an arrangement that, as it melted, the water would trickle into a vessel below. After a certain number of minutes the melted water was measured, then a simple computation led to a knowledge of how much heat was absorbed from the air per minute by a square foot of the surface of the ice. From this it was easy to calculate from the known thermal capacity of air, and the quantity of the latter necessary per minute, how many feet of cooling surface must be exposed. I was quite surprised at the result. A case of ice nearly as long as an ordinary room, and large enough for men to walk about in it, must be provided. This was speedily done, supports were erected for the blocks of ice, the case was placed at the end of Mr. Jennings's box, and everything gotten in readiness for directing the air current through the receptacle, and into the room through tubes which had already been prepared.

It happened that Mr. Jennings's box was on the line along which the air was being conducted, and I was going to get it out of the way. The owner implored that it should be allowed to remain, suggesting that the air might just as well as not continue to pass through it. The surroundings were those in which one may be excused for not being harsh. Such an outpouring of sympathy on the part of the public had never been seen in Washington since the assassination of Lincoln. Those in charge were overwhelmed with every sort of contrivance for relieving the sufferings of the illustrious patient. Such disinterested efforts in behalf of a public and patriotic object had never been seen. Mr. Jennings had gone to the trouble and expense of bringing his apparatus all the way from Baltimore to Washington in order to do what in him lay toward the end for which all were striving. To leave his box in place could not do the slightest harm, and would be a gratification to him. So I let it stand, and the air continued to pass through it on its way to the ice chest.

While these arrangements were in progress three officers of engineers of the navy reported under orders at the White House, to do what they could toward the cooling of the air. They were Messrs. William L. Baillie, Richard Inch, and W. S. Moore. All four of us coöperated in the work in a most friendly way, and when we got through we made our reports to the Navy Department. A few weeks later these reports were printed in a pamphlet, partly to correct a wrong impression about the Jennings cold-box. Regular statements had appeared in the local evening paper that the air was being cooled by this useless contrivance. Their significance first came out several months later, on the occasion of an exhibition of mechanical or industrial implements at Boston. Among these was Mr. Jennings's cold-box, which was exhibited as the instrument that had cooled the air of President Garfield's chamber.

More light yet was thrown on the case when the question of rewarding those who had taken part in treating the President, or alleviating his sufferings in any way, came before Congress. Mr. Jennings was, I believe, among the claimants. Congress found the task of making the proper awards to each individual to be quite beyond its power at the time, so a lump sum was appropriated, to be divided by the Treasury Department according to its findings in each particular case. Before the work of making the awards was completed, I left on the expedition to the Cape of Good Hope to observe the transit of Venus, and never learned what had been done with the claims of Mr. Jennings. It might naturally be supposed that when an official report to the Navy Department showed that he had no claims whatever except those of a patriotic citizen who had done his best, which was just nothing at all, to promote the common end, the claim would have received little attention. Possibly this may have been the case. But I do not know what the outcome of the matter was.

Shortly after the death of the President, I had a visit from an inventor who had patented a method of cooling the air of a room by ice. He claimed that our work at the Executive Mansion was an infringement on his patent. I replied that I could not see how any infringement was possible, because we had gone to work in the most natural way, without consulting any previous process whatever, or even knowing of the existence of a patent. Surely the operation of passing air over ice to cool it could not be patentable.