Of equal importance to fuel economy is a better system of airship navigation. This is similar in principle to steamship navigation, but it is made more complicated by the much greater drift of atmospheric currents. Moreover, air currents can never be charted as exactly as sea currents. An excellent meteorological organization, for reporting motions of the air at given times, is therefore essential.

When flying over land a navigator can determine the drift of his vessel by taking observation on a suitable fixed point on the earth's surface, and adjusting his compass course accordingly. It is probable that a gyroscopic compass will be the standard type for dirigibles. Many aviators have experienced difficulties with the magnetic compass on long flights; although it has served me well always, especially on my transatlantic flight as Captain Alcock's navigator.

Over the sea no fixed point is available, so that the motion of the wind must be checked periodically. One method is for the navigator to make astronomical observations, and from them deduce his position on the chart. Another may be the use of bombs which ignite on the water and give out a dense smoke or a bright light, lasting for several minutes. During the day the navigator sights on the smoke, and during the night on the light, and thus discovers the wind's velocity and direction. An invention that could simplify navigation would be some form of ground-speed meter, showing at a glance the rate of progress over the earth (as distinct from air speed), with either a following or a contrary wind.

The most valuable means of airship navigation will be that of directional wireless. Communication from two separate stations, which could be either land terminals or stationary ships in the ocean, gives the direction of the transmitted wireless waves and signals to the dirigible its bearings. The position is then laid off on the chart, and the course regulated accordingly. This method was used by the German Zeppelins during the war.

Of equal importance to the structural and navigational equipment of airships is the provision of suitable terminals for each route. These would require, among other necessities, an aërodrome of about one mile square; a double airship shed capable of housing two vessels; a mooring-out tower; mechanical gear for transferring an airship from the mooring tower to the shed; hydrogen generating and storage plant; repair workshops and stores; meteorological offices; wireless telegraphy installation; electrical night signaling and landing arrangements; a station on the local railway from the main part of the city; a hotel; a garage; and customs and booking offices.

The aërodrome must be a short distance from the city served by the airship service. If possible it should be near a chemical works where hydrogen could be produced as a by-product. The ground would be preferably on a site remote from hills and other topographical features likely to cause air disturbances.

The double sheds for housing vessels of the size specified, three million, five hundred thousand cubic feet capacity, would have two berths, the minimum dimensions of each of which must be eight hundred and fifty feet long, one hundred and fifty feet wide, and one hundred and fifteen feet high. Their contents should include hydrogen filling mains and gear for slinging the airships from the roof when deflated for overhaul. Special arrangements would be made for rapid replenishment of the ships with gas, fuel, and water ballast.

If no industrial supply of hydrogen were provided by a nearby factory, the aërodrome should have a generating plant capable of producing fifty thousand cubic feet of hydrogen per hour. Gasometer storage, with a capacity of about five hundred thousand cubic feet, is also a necessity.

The meteorological office would issue weather reports for the guidance of airship navigators, and issue navigating instructions to them by means of the wireless installation. The latter should have a range of at least five thousand miles.

Each aërodrome would be provided with suitable electric light signals to indicate the position of the landing ground to incoming ships at night, as well as landing lights to point the way to the mooring tower. Trolleys running on guide rails, with electrically driven gear, could move a dirigible from the tower to the shed with a minimum of man power.