We are called upon, then, to explain how any force can have been exerted against the upper masses, so as to produce movements in which the subjacent strata have not participated. It may be answered that, if we conceive the till and its boulders to have been drifted to their present place by ice, the lateral pressure may have been supplied by the stranding of ice-islands. We learn, from the observations of Messrs. Dease and Simpson in the polar regions, that such islands, when they run aground, push before them large mounds of shingle and sand. It is therefore probable that they often cause great alterations in the arrangement of pliant and incoherent strata forming the upper part of shoals or submerged banks, the inferior portions of the same remaining unmoved. Or many of the complicated curvatures of these layers of loose sand and gravel may have been due to another cause, the melting on the spot of icebergs and coast ice in which successive deposits of pebbles, sand, ice, snow, and mud, together with huge masses of rock fallen from cliffs, may have become interstratified. Ice-islands so constituted often capsize when afloat, and gravel once horizontal may have assumed, before the associated ice was melted, an inclined or vertical position. The packing of ice forced up on a coast may lead to similar derangement in a frozen conglomerate of sand or shingle, and, as Mr. Trimmer has suggested[130-A], alternate layers of earthy matter may have sunk down slowly during the liquefaction of the intercalated ice, so as to assume the most fantastic and anomalous positions, while the aqueous strata below, and those afterwards thrown down above, may be perfectly horizontal.

A buried forest has been adverted to as underlying the drift on the coast of Norfolk. At the time when the trees grew there must have been dry land over a large area, which was afterwards submerged, so as to allow a mass of stratified and unstratified drift, 200 feet and more in thickness, to be superimposed. The undermining of the cliffs by the sea in modern times has enabled us to demonstrate, beyond all doubt, the fact of this superposition, and that the forest was not formed along the present coast-line. Its situation implies a subsidence of several hundred feet since the commencement of the drift period, after which there must have been an upheaval of the same ground; for the forest bed of Norfolk is now again so high as to be exposed to view at many points at low water; and this same upward movement may explain why the till, which is conceived to have been of submarine origin, is now met with far inland, and on the summit of hills.

The boulder formation of the west of England, observed in Lancashire, Cheshire, Shropshire, Staffordshire, and Worcestershire, contains in some places marine shells of recent species, rising to various heights, from 100 to 350 feet above the sea. The erratics have come partly from the mountains of Cumberland, and partly from those of Scotland.

But it is on the mountains of North Wales that the "Northern drift," with its characteristic marine fossils, reaches its greatest altitude. On Moel Tryfane, near the Menai Straits, Mr. Trimmer met with shells of the species commonly found in the drift at the height of 1392 feet above the level of the sea.

It is remarkable that in the same neighbourhood where there is evidence of so great a submergence of the land during part of the glacial period, we have also the most decisive proofs yet discovered in the British Isles of subaerial glaciers. Dr. Buckland published in 1842 his reasons for believing that the Snowdonian mountains in Caernarvonshire were formerly covered with glaciers, which radiated from the central heights through the seven principal valleys of that chain, where striæ and flutings are seen on the polished rocks directed towards as many different points of the compass. He also described the "moraines" of the ancient glaciers, and the rounded "bosses" or small flattened domes of polished rock, such as the action of moving glaciers is known to produce in Switzerland, when gravel, sand, and boulders, underlying the ice, are forced along over a foundation of hard stone. Mr. Darwin, and subsequently Prof. Ramsay, have confirmed Dr. Buckland's views in regard to these Welsh glaciers. Nor indeed was it to be expected that geologists should discover proofs of icebergs having abounded in the area now occupied by the British Isles in the Pleistocene period without sometimes meeting with the signs of contemporaneous glaciers which covered hills even of moderate elevation between the 50th and 60th degrees of latitude.

In Ireland the "drift" exhibits the same general characters and fossil remains as in Scotland and England; but in the southern part of that island, Prof. E. Forbes and Capt. James found in it some shells which show that the glacial sea communicated with one inhabited by a more southern fauna. Among other species in the south, they mention at Wexford and elsewhere the occurrence of Nucula Cobboldiæ (see [fig. 120.] [p. 149.]) and Turritella incrassata (a crag fossil); also a southern form of Fusus, and a Mitra allied to a Spanish species.[131-A]


CHAPTER XII.

BOULDER FORMATION—continued.

Difficulty of interpreting the phenomena of drift before the glacial hypothesis was adopted — Effects of intense cold in augmenting the quantity of alluvium — Analogy of erratics and scored rocks in North America and Europe — Bayfield on shells in drift of Canada — Great subsidence and re-elevation of land from the sea, required to account for glacial appearances — Why organic remains so rare in northern drift — Mastodon giganteus in United States — Many shells and some quadrupeds survived the glacial cold — Alps an independent centre of dispersion of erratics — Alpine blocks on the Jura — Whether transported by glaciers or floating ice — Recent transportation of erratics from the Andes to Chiloe — Meteorite in Asiatic drift.