Central France.—Lacustrine strata belonging, for the most part, to the same Upper Eocene series, are again met with in Auvergne, Cantal, and Velay, the sites of which may be seen in the annexed map. They appear to be the monuments of ancient lakes, which, like some of those now existing in Switzerland, once occupied the depressions in a mountainous region, and have been each fed by one or more rivers and torrents. The country where they occur is almost entirely composed of granite and different varieties of granitic schist, with here and there a few patches of secondary strata, much dislocated, and which have probably suffered great denudation. There are also some vast piles of volcanic matter (see the map), the greater part of which is newer than the freshwater strata, and is sometimes seen to rest upon them, while a small part has evidently been of contemporaneous origin. Of these igneous rocks I shall treat more particularly in another part of this work.
Before entering upon any details, I may observe, that the study of these regions possesses a peculiar interest, very distinct in kind from that derivable from the investigation either of the Parisian or English tertiary strata. For we are presented in Auvergne with the evidence of a series of events of astonishing magnitude and grandeur, by which the original form and features of the country have been greatly changed, yet never so far obliterated but that they may still, in part at least, be restored in imagination. Great lakes have disappeared,—lofty mountains have been formed, by the reiterated emission of lava, preceded and followed by showers of sand and scoriæ,—deep valleys have been subsequently furrowed out through masses of lacustrine and volcanic origin,—at a still later date, new cones have been thrown up in these valleys,—new lakes have been formed by the damming up of rivers,—and more than one creation of quadrupeds, birds, and plants, Eocene, Miocene, and Pliocene, have followed in succession; yet the region has preserved from first to last its geographical identity; and we can still recall to our thoughts its external condition and physical structure before these wonderful vicissitudes began, or while a part only of the whole had been completed. There was first a period when the spacious lakes, of which we still may trace the boundaries, lay at the foot of mountains of moderate elevation, unbroken by the bold peaks and precipices of Mont Dor, and unadorned by the picturesque outline of the Puy de Dome, or of the volcanic cones and craters now covering the granitic platform. During this earlier scene of repose deltas were slowly formed; beds of marl and sand, several hundred feet thick, deposited; siliceous and calcareous rocks precipitated from the waters of mineral springs; shells and insects imbedded, together with the remains of the crocodile and tortoise, the eggs and bones of water birds, and the skeletons of quadrupeds, some of them belonging to the same genera as those entombed in the Eocene gypsum of Paris. To this tranquil condition of the surface succeeded the era of volcanic eruptions, when the lakes were drained, and when the fertility of the mountainous district was probably enhanced by the igneous matter ejected from below, and poured down upon the more sterile granite. During these eruptions, which appear to have taken place after the disappearance of the Eocene fauna, and in the Miocene epoch, the mastodon, rhinoceros, elephant, tapir, hippopotamus, together with the ox, various kinds of deer, the bear, hyæna, and many beasts of prey, ranged the forest, or pastured on the plain, and were occasionally overtaken by a fall of burning cinders, or buried in flows of mud, such as accompany volcanic eruptions. Lastly, these quadrupeds became extinct, and gave place to Pliocene mammalia, and these, in their turn, to species now existing. There are no signs, during the whole time required for this series of events, of the sea having intervened, nor of any denudation which may not have been accomplished by currents in the different lakes, or by rivers and floods accompanying repeated earthquakes, during which the levels of the district have in some places been materially modified, and perhaps the whole upraised relatively to the surrounding parts of France.
Auvergne.—The most northern of the freshwater groups is situated in the valley-plain of the Allier, which lies within the department of the Puy de Dome, being the tract which went formerly by the name of the Limagne d'Auvergne. It is inclosed by two parallel mountain ranges,—that of the Forèz, which divides the waters of the Loire and Allier, on the east; and that of the Monts Domes, which separates the Allier from the Sioule, on the west.[181-A] The average breadth of this tract is about 20 miles; and it is for the most part composed of nearly horizontal strata of sand, sandstone, calcareous marl, clay, and limestone, none of which observe a fixed and invariable order of superposition. The ancient borders of the lake, wherein the freshwater strata were accumulated, may generally be traced with precision, the granite and other ancient rocks rising up boldly from the level country. The actual junction, however, of the lacustrine and granitic beds is rarely seen, as a small valley usually intervenes between them. The freshwater strata may sometimes be seen to retain their horizontality within a very slight distance of the border-rocks, while in some places they are inclined, and in few instances vertical. The principal divisions into which the lacustrine series may be separated are the following:—1st, Sandstone, grit, and conglomerate, including red marl and red sandstone. 2dly, Green and white foliated marls. 3dly, Limestone or travertin, often oolitic. 4thly, Gypseous marls.
1. a. Sandstone and conglomerate.—Strata of sand and gravel, sometimes bound together into a solid rock, are found in great abundance around the confines of the lacustrine basin, containing, in different places, pebbles of all the ancient rocks of the adjoining elevated country; namely, granite, gneiss, mica-schist, clay-slate, porphyry, and others. But these strata do not form one continuous band around the margin of the basin, being rather disposed like the independent deltas which grow at the mouths of torrents along the borders of existing lakes.
At Chamalieres, near Clermont, we have an example of one of these deltas, or littoral deposits, of local extent, where the pebbly beds slope away from the granite, as if they had formed a talus beneath the waters of the lake near the steep shore. A section of about 50 feet in vertical height has been laid open by a torrent, and the pebbles are seen to consist throughout of rounded and angular fragments of granite, quartz, primary slate, and red sandstone; but without any intermixture of those volcanic rocks which now abound in the neighbourhood, and which could not have been there when the conglomerate was formed. Partial layers of lignite and pieces of wood are found in these beds.
At some localities on the margin of the basin quartzose grits are found; and, where these rest on granite, they are sometimes formed of separate crystals of quartz, mica, and felspar, derived from the disintegrated granite, the crystals having been subsequently bound together by a siliceous cement. In these cases the granite seems regenerated in a new and more solid form; and so gradual a passage takes place between the rock of crystalline and that of mechanical origin, that we can scarcely distinguish where one ends and the other begins.
In the hills called the Puy de Jussat and La Roche, we have the advantage of seeing a section continuously exposed for about 700 feet in thickness. At the bottom are foliated marls, white and green, about 400 feet thick; and above, resting on the marls, are the quartzose grits, cemented by calcareous matter, which is sometimes so abundant as to form imbedded nodules. These sometimes constitute spheroidal concretions 6 feet in diameter, and pass into beds of solid limestone, resembling the Italian travertins, or the deposits of mineral springs. This section is close to the confines of the basin; so that the lake must here have been filled up near the shore with fine mud, before the coarse superincumbent sand was introduced. There are other cases where sand is seen below the marl.
1. b. Red marl and sandstone.—But the most remarkable of the arenaceous groups is one of red sandstone and red marl, which are identical in all their mineral characters with the secondary New Red sandstone and marl of England. In these secondary rocks the red ground is sometimes variegated with light greenish spots, and the same may be seen in the tertiary formation of freshwater origin at Coudes, on the Allier. The marls are sometimes of a purplish-red colour, as at Champheix, and are accompanied by a reddish limestone, like the well-known "cornstone," which is associated with the Old Red sandstone of English geologists. The red sandstone and marl of Auvergne have evidently been derived from the degradation of gneiss and mica-schist, which are seen in situ on the adjoining hills, decomposing into a soil very similar to the tertiary red sand and marl. We also find pebbles of gneiss, mica-schist, and quartz in the coarser sandstones of this group, clearly pointing to the parent rocks from which the sand and marl are derived. The red beds, although destitute themselves of organic remains, pass upwards into strata containing Eocene fossils, and are certainly an integral part of the lacustrine formation. From this example the student will learn how small is the value of mineral character alone, as a test of the relative age of rocks.
2. Green and white foliated marls.—The same primary rocks of Auvergne, which, by the partial degradation of their harder parts, gave rise to the quartzose grits and conglomerates before mentioned, would, by the reduction of the same materials into powder, and by the decomposition of their felspar, mica, and hornblende, produce aluminous clay, and, if a sufficient quantity of carbonate of lime was present, calcareous marl. This fine sediment would naturally be carried out to a greater distance from the shore, as are the various finer marls now deposited in Lake Superior. And, as in the American lake, shingle and sand are annually amassed near the northern shores, so in Auvergne the grits and conglomerates before mentioned were evidently formed near the borders.