We may, therefore, perceive distinctly that, as the pines and cycadeous plants of the ancient "dirt bed," or fossil forest, of the Lower Purbeck were killed by submergence under fresh water, and soon buried beneath muddy sediment, so an invasion of argillaceous matter put a sudden stop to the growth of the Bradford Encrinites, and led to their preservation in marine strata.[265-A]

Such differences in the fossils as distinguish the calcareous and argillaceous deposits from each other, would be described by naturalists as arising out of a difference in the stations of species; but besides these, there are variations in the fossils of the higher, middle, and lower part of the oolitic series, which must be ascribed to that great law of change in organic life by which distinct assemblages of species have been adapted, at successive geological periods, to the varying conditions of the habitable surface. In a single district it is difficult to decide how far the limitation of species to certain minor formations has been due to the local influence of stations, or how far it has been caused by time or the creative and destroying law above alluded to. But we recognize the reality of the last-mentioned influence, when we contrast the whole oolitic series of England with that of parts of the Jura, Alps, and other distant regions, where there is scarcely any lithological resemblance; and yet some of the same fossils remain peculiar in each country to the Upper, Middle, and Lower Oolite formations respectively. Mr. Thurmann has shown how remarkably this fact holds true in the Bernese Jura, although the argillaceous divisions, so conspicuous in England, are feebly represented there, and some entirely wanting.

Fig. 283.

Terebratula digona. Bradford clay. Nat. size.

The Bradford clay above alluded to is sometimes 60 feet thick, but, in many places, it is wanting; and, in others, where there are no limestones, it cannot easily be separated from the clays of the overlying "forest marble" and underlying "fuller's earth."

The calcareous portion of the Great Oolite consists of several shelly limestones, one of which, called the Bath Oolite, is much celebrated as a building stone. In parts of Gloucestershire, especially near Minchinhampton, the Great Oolite, says Mr. Lycett, "must have been deposited in a shallow sea, where strong currents prevailed, for there are frequent changes in the mineral character of the deposit, and some beds exhibit false stratification. In others, heaps of broken shells are mingled with pebbles of rocks foreign to the neighbourhood, and with fragments of abraded madrepores, dicotyledonous wood, and crabs' claws. The shelly strata, also, have occasionally suffered denudation, and the removed portions have been replaced by clay."[266-A] In such shallow-water beds cephalopoda are rare, and, instead of ammonites and belemnites, numerous genera of carnivorous trachelipods appear. Out of one hundred and forty-two species of univalves obtained from the Minchinhampton beds, Mr. Lycett found no less than forty-one to be carnivorous. They belong principally to the genera Buccinum, Pleurotoma, Rostellaria, Murex, and Fusus, and exhibit a proportion of zoophagous species not very different from that which obtains in warm seas of the recent period. These conchological results are curious and unexpected, since it was imagined that we might look in vain for the carnivorous trachelipods in rocks of such high antiquity as the Great Oolite, and it was a received doctrine that they did not begin to appear in considerable numbers till the Eocene period when those two great families of cephalopoda, the ammonites and belemnites, had become extinct.

Stonesfield slate.—The slate of Stonesfield has been shown by Mr. Lonsdale to lie at the base of the Great Oolite.[266-B] It is a slightly oolitic shelly limestone, forming large spheroidal masses imbedded in sand, only 6 feet thick, but very rich in organic remains. It contains some pebbles of a rock very similar to itself, and which may be portions of the deposit, broken up on a shore at low water or during storms, and redeposited. The remains of belemnites, trigoniæ, and other marine shells, with fragments of wood, are common, and impressions of ferns, cycadeæ, and other plants. Several insects, also, and, among the rest, the wing-covers of beetles, are perfectly preserved (see [fig. 284.]), some of them approaching nearly to the genus Buprestis.[267-A] The remains, also, of many genera of reptiles, such as Plesiosaur, Crocodile, and Pterodactyl, have been discovered in the same limestone.