It will be seen in the following chapters, that in the earth's crust there are volcanic tuffs of all ages, containing marine shells, which bear witness to eruptions at many successive geological periods. These tuffs, and the associated trappean rocks, must not be compared to lava and scoriæ which had cooled in the open air. Their counterparts must be sought in the products of modern submarine volcanic eruptions. If it be objected that we have no opportunity of studying these last, it may be answered, that subterranean movements have caused, almost everywhere in regions of active volcanos, great changes in the relative level of land and sea, in times comparatively modern, so as to expose to view the effects of volcanic operations at the bottom of the sea.
Thus, for example, the recent examination of the igneous rocks of Sicily, especially those of the Val di Noto, has proved that all the more ordinary varieties of European trap have been there produced under the waters of the sea, at a modern period; that is to say, since the Mediterranean has been inhabited by a great proportion of the existing species of testacea.
These igneous rocks of the Val di Noto, and the more ancient trappean rocks of Scotland and other countries, differ from subaerial volcanic formations in being more compact and heavy, and in forming sometimes extensive sheets of matter intercalated between marine strata, and sometimes stratified conglomerates, of which the rounded pebbles are all trap. They differ also in the absence of regular cones and craters, and in the want of conformity of the lava to the lowest levels of existing valleys.
It is highly probable, however, that insular cones did exist in some parts of the Val di Noto: and that they were removed by the waves, in the same manner as the cone of Graham island, in the Mediterranean, was swept away in 1831, and that of Nyöe, off Iceland, in 1783.[389-A] All that would remain in such cases, after the bed of the sea has been upheaved and laid dry, would be dikes and shapeless masses of igneous rock, cutting through sheets of lava which may have spread over the level bottom of the sea, and strata of tuff, formed of materials first scattered far and wide by the winds and waves, and then deposited. Trap conglomerates also, to which the action of the waves must give rise during the denudation of such volcanic islands, will emerge from the deep whenever the bottom of the sea becomes land.
The proportion of volcanic matter which is originally submarine must always be very great, as those volcanic vents which are not entirely beneath the sea, are almost all of them in islands, or, if on continents, near the shore. This may explain why extended sheets of trap so often occur, instead of narrow threads, like lava streams. For, a multitude of causes tend, near the land, to reduce the bottom of the sea to a nearly uniform level,—the sediment of rivers,—materials transported by the waves and currents of the sea from wasting cliffs,—showers of sand and scoriæ ejected by volcanos, and scattered by the wind and waves. When, therefore, lava is poured out on such a surface, it will spread far and wide in every direction in a liquid sheet, which may afterwards, when raised up, form the tabular capping of the land.
As to the absence of porosity in the trappean formations, the appearances are in a great degree deceptive, for all amygdaloids are, as already explained, porous rocks, into the cells of which mineral matter, such as silex, carbonate of lime, and other ingredients, have been subsequently introduced (see [p. 373.]); sometimes, perhaps, by secretion during the cooling and consolidation of lavas.
In the Little Cumbray, one of the Western Islands, near Arran, the amygdaloid sometimes contains elongated cavities filled with brown spar; and when the nodules have been washed out, the interior of the cavities is glazed with the vitreous varnish so characteristic of the pores of slaggy lavas. Even in some parts of this rock which are excluded from air and water, the cells are empty, and seem to have always remained in this state, and are therefore undistinguishable from some modern lavas.[390-A]
Dr. MacCulloch, after examining with great attention these and the other igneous rocks of Scotland, observes, "that it is a mere dispute about terms, to refuse to the ancient eruptions of trap the name of submarine volcanos; for they are such in every essential point, although they no longer eject fire and smoke."[390-B] The same author also considers it not improbable that some of the volcanic rocks of the same country may have been poured out in the open air.[390-C]
Although the principal component minerals of subaerial lavas are the same as those of intrusive trap, and both the columnar and globular structure are common to both, there are, nevertheless, some volcanic rocks which never occur as lava, such as greenstone, clinkstone, the more crystalline porphyries, and those traps in which quartz and mica appear as constituent parts. In short, the intrusive trap rocks, forming the intermediate step between lava and the plutonic rocks, depart in their characters from lava in proportion as they approximate to granite.
These views respecting the relations of the volcanic and trap rocks will be better understood when the reader has studied, in the 33d chapter, what is said of the plutonic formations.