The tuffs now alluded to are not exclusively marine, but include, in some places, freshwater shells; in others, the bones of terrestrial quadrupeds. The diversity of organic remains in formations of this nature is perfectly intelligible, if we reflect on the wide dispersion of ejected matter during late eruptions, such as that of the volcano of Coseguina, in the province of Nicaragua, January 19. 1835. Hot cinders and fine scoriæ were then cast up to a vast height, and covered the ground as they fell to the depth of more than 10 feet, and for a distance of 8 leagues from the crater in a southerly direction. Birds, cattle, and wild animals were scorched to death in great numbers, and buried in these ashes. Some volcanic dust fell at Chiapa, upwards of 1200 miles to windward of the volcano, a striking proof of a counter current in the upper region of the atmosphere; and some on Jamaica, about 700 miles distant to the north-east. In the sea, also, at the distance of 1100 miles from the point of eruption, Captain Eden of the Conway sailed 40 miles through floating pumice, among which were some pieces of considerable size.[399-A]

Test of age by mineral composition.—As sediment of homogeneous composition, when discharged from the mouth of a large river, is often deposited simultaneously over a wide space, so a particular kind of lava, flowing from a crater during one eruption, may spread over an extensive area; as in Iceland in 1783, when the melted matter, pouring from Skaptar Jokul, flowed in streams in opposite directions, and caused a continuous mass, the extreme points of which were 90 miles distant from each other. This enormous current of lava varied in thickness from 100 feet to 600 feet, and in breadth from that of a narrow river gorge to 15 miles.[399-B] Now, if such a mass should afterwards be divided into separate fragments by denudation, we might still perhaps identify the detached portions by their similarity in mineral composition. Nevertheless, this test will not always avail the geologist; for, although there is usually a prevailing character in lava emitted during the same eruption, and even in the successive currents flowing from the same volcano, still, in many cases, the different parts even of one lava-stream, or, as before stated, of one continuous mass of trap, vary so much in mineral composition and texture as to render these characters of minor importance when compared to their value in the chronology of the fossiliferous rocks.

It will, however, be seen in the description which follows, of the European trap rocks of different ages, that they had often a peculiar lithological character, resembling the differences before remarked as existing between the modern lavas of Vesuvius, Etna, and Chili. (See [p. 378.])

It has been remarked that in Auvergne, the Eifel, and other countries where trachyte and basalt are both present, the trachytic rocks are for the most part older than the basaltic. These rocks do, indeed, sometimes alternate partially, as in the volcano of Mont Dor, in Auvergne; but the great mass of trachyte occupies in general an inferior position, and is cut through and overflowed by basalt. It can by no means be inferred that trachyte predominated greatly at one period of the earth's history and basalt at another, for we know that trachytic lavas have been formed at many successive periods, and are still emitted from many active craters; but it seems that in each region, where a long series of eruptions have occurred, the more felspathic lavas have been first emitted, and the escape of the more augitic kinds has followed. The hypothesis suggested by Mr. Scrope may, perhaps, afford a solution of this problem. The minerals, he observes, which abound in basalt are of greater specific gravity than those composing the felspathic lavas; thus, for example, hornblende, augite, and olivine are each more than three times the weight of water; whereas common felspar, albite, and Labrador felspar, have each scarcely more than 21/2 times the specific gravity of water; and the difference is increased in consequence of there being much more iron in a metallic state in basalt and greenstone than in trachyte and other felspathic lavas and traps. If, therefore, a large quantity of rock be melted up in the bowels of the earth by volcanic heat, the denser ingredients of the boiling fluid may sink to the bottom, and the lighter remaining above would in that case be first propelled upwards to the surface by the expansive power of gases. Those materials, therefore, which occupied the lowest place in the subterranean reservoir will always be emitted last, and take the uppermost place on the exterior of the earth's crust.

Test by included fragments.—We may sometimes discover the relative age of two trap rocks, or of an aqueous deposit and the trap on which it rests, by finding fragments of one included in the other, in cases such as those before alluded to, where the evidence of superposition alone would be insufficient. It is also not uncommon to find conglomerates almost exclusively composed of rolled pebbles of trap, associated with stratified rocks in the neighbourhood of masses of intrusive trap. If the pebbles agree generally in mineral character with the latter, we are then enabled to determine the age of the intrusive rock by knowing that of the fossiliferous strata associated with the conglomerate. The origin of such conglomerates is explained by observing the shingle beaches composed of trap pebbles in modern volcanic islands, or at the base of Etna.

Post-Pliocene Period (including the Recent).—I shall now select examples of contemporaneous volcanic rocks of successive geological periods, to show that igneous causes have been in activity in all past ages of the world, and that they have been ever shifting the places where they have broken out at the earth's surface.

One portion of the lavas, tuffs, and trap dikes of Etna, Vesuvius, and the Island of Ischia, has been produced within the historical era; another, and a far more considerable part, originated at times immediately antecedent, when the waters of the Mediterranean were already inhabited by the existing species of testacea. The southern and eastern flanks of Etna are skirted by a fringe of alternating sedimentary and volcanic deposits, of submarine origin, as at Adernò, Trezza, and other places. Of sixty-five species of fossil shells which I procured in 1828 from this formation, near Trezza, it was impossible to distinguish any from species now living in the neighbouring sea.

Fig. 464.