The same phenomenon, observes M. Necker, may readily be exhibited on a smaller scale, if we detach a piece of liquid lava from a moving current. The fragment cools instantly, and we find the surface covered with a vitreous coat; while the interior, although extremely fine-grained, has a more stony appearance.
It must, however, be observed, that although the lateral portions of the dikes are finer grained than the central, yet the vitreous parting layer before alluded to is rare in Vesuvius. This may, perhaps, be accounted for, as the above-mentioned author suggests, by the great heat which the walls of a fissure may acquire before the fluid mass begins to consolidate, in which case the lava, even at the sides, would cool very slowly. Some fissures, also, may be filled from above, as frequently happens in the volcanos of the Sandwich Islands, according to the observations of Mr. Dana; and in this case the refrigeration at the sides would be more rapid than when the melted matter flowed upwards from the volcanic foci, in an intensely heated state. Mr. Darwin informs me that in St. Helena almost every dike has a vitreous selvage.
The rock composing the dikes both in the modern and ancient part of Vesuvius is far more compact than that of ordinary lava, for the pressure of a column of melted matter in a fissure greatly exceeds that in an ordinary stream of lava; and pressure checks the expansion of those gases which give rise to vesicles in lava.
There is a tendency in almost all the Vesuvian dikes to divide into horizontal prisms, a phenomenon in accordance with the formation of vertical columns in horizontal beds of lava; for in both cases the divisions which give rise to the prismatic structure are at right angles to the cooling surfaces.
Newer Pliocene Period—Val di Noto.—I have already alluded (see [p. 150.]) to the igneous rocks which are associated with a great marine formation of limestone, sand, and marl, in the southern part of Sicily, as at Vizzini and other places. In this formation, which was shown to belong to the Newer Pliocene period, large beds of oysters and corals repose upon lava, and are unaltered at the point of contact. In other places we find dikes of igneous rock intersecting the fossiliferous beds, and converting the clays into siliceous schist, the laminæ being contorted and shivered into innumerable fragments at the junction, as near the town of Vizzini.
The volcanic formations of the Val di Noto usually consist of the most ordinary variety of basalt, with or without olivine. The rock is sometimes compact, often very vesicular. The vesicles are occasionally empty, both in dikes and currents, and are in some localities filled with calcareous spar, arragonite, and zeolites. The structure is, in some places, spheroidal; in others, though rarely, columnar. I found dikes of amygdaloid, wacké, and prismatic basalt, intersecting the limestone at the bottom of the hollow called Gozzo degli Martiri, below Melilli.
Fig. 468. Fig. 469. Ground-plan of dikes near Palagonia.
- a. Lava.
- b. Peperino, consisting of volcanic sand, mixed with fragments of lava and limestone.