The uniform mineral character of large masses of granite seems to indicate that large quantities of the component elements were thoroughly mixed up together, and then crystallized under precisely similar conditions. There are, however, many accidental, or "occasional," minerals, as they are termed, which belong to granite. Among these black schorl or tourmaline, actinolite, zircon, garnet, and fluor spar, are not uncommon; but they are too sparingly dispersed to modify the general aspect of the rock. They show, nevertheless, that the ingredients were not everywhere exactly the same; and a still greater variation may be traced in the ever-varying proportions of the felspar, quartz, and mica.
Syenite.—When hornblende is the substitute for mica, which is very commonly the case, the rock becomes Syenite: so called from the celebrated ancient quarries of Syene in Egypt. It has all the appearance of ordinary granite, except when mineralogically examined in hand specimens, and is fully entitled to rank as a geological member of the same plutonic family as granite. Syenite, however, after maintaining the granitic character throughout extensive regions, is not uncommonly found to lose its quartz, and to pass insensibly into syenitic greenstone, a rock of the trap family. Werner considered syenite as a binary compound of felspar and hornblende, and regarded quartz as merely one of its occasional minerals.
Syenitic-granite.—The quadruple compound of quartz, felspar, mica, and hornblende, may be so termed. This rock occurs in Scotland and in Guernsey.
Talcose granite, or Protogine of the French, is a mixture of felspar, quartz, and talc. It abounds in the Alps, and in some parts of Cornwall, producing by its decomposition the china clay, more than 12,000 tons of which are annually exported from that country for the potteries.[440-A]
Schorl rock, and schorly granite.—The former of these is an aggregate of schorl, or tourmaline, and quartz. When felspar and mica are also present, it may be called schorly granite. This kind of granite is comparatively rare.
Eurite.—A rock in which all the ingredients of granite are blended into a finely granular mass. Crystals of quartz and mica are sometimes scattered through the base of Eurite.
Pegmatite.—A name given by French writers to a variety of granite; a granular mixture of quartz and felspar; frequent in granite veins; passes into graphic granite.
All these granites pass into certain kinds of trap, a circumstance which affords one of many arguments in favour of what is now the prevailing opinion, that the granites are also of igneous origin. The contrast of the most crystalline form of granite, to that of the most common and earthy trap, is undoubtedly great; but each member of the volcanic class is capable of becoming porphyritic, and the base of the porphyry may be more and more crystalline, until the mass passes to the kind of granite most nearly allied in mineral composition.
The minerals which constitute alike the granitic and volcanic rocks consist, almost exclusively, of seven elements, namely, silica, alumina, magnesia, lime, soda, potash, and iron; and these may sometimes exist in about the same proportions in a porous lava, a compact trap, or a crystalline granite. It may perhaps be found, on farther examination—for on this subject we have yet much to learn—that the presence of these elements in certain proportions is more favourable than in others to their assuming a crystalline or true granitic structure; but it is also ascertained by experiment, that the same materials may, under different circumstances, form very different rocks. The same lava, for example, may be glassy, or scoriaceous, or stony, or porphyritic, according to the more or less rapid rate at which it cools; and some trachytes and syenitic-greenstones may doubtless form granite and syenite, if the crystallization take place slowly.
It has also been suggested that the peculiar nature and structure of granite may be due to its retaining in it that water which is seen to escape from lavas when they cool slowly, and consolidate in the atmosphere. Boutigny's experiments have shown that melted matter, at a white heat, requires to have its temperature lowered before it can vapourize water; and such discoveries, if they fail to explain the manner in which granites have been formed, serve at least to remind us of the entire distinctness of the conditions under which plutonic and volcanic rocks must be produced.[441-A]