No substance so coarse as gravel occurs in any part of the delta of the Ganges and Brahmapootra, nor nearer the sea than 400 miles. Yet it is remarkable that the boring of an Artesian well at Fort William, near Calcutta, in the years 1835-1840, displayed, at the depth of 120 feet, clay and sand with pebbles. This boring was carried to a depth of 481 feet below the level of Calcutta, and the geological section obtained in the operation has been recorded with great care. Under the surface soil, at a depth of about ten feet, they came to a stiff blue clay about forty feet in thickness; below which was sandy clay, containing in its lower portion abundance of decayed vegetable matter, which at the bottom assumed the character of a stratum of black peat two feet thick. This peaty mass was considered as a clear indication (like the "dirt-bed" of Portland) of an ancient terrestrial surface, with a forest or Sunderbund vegetation. Logs and branches of a red-colored wood occur both above and immediately below the peat, so little altered that Dr. Wallich was able to identify them with the Soondri tree, Heritiera littoralis, one of the most prevalent forms, at the base of the delta. Dr. Falconer tells me that similar peat has been met with at other points round Calcutta at the depth of nine feet and twenty-five feet. It appears, therefore, that there has been a sinking down of what was originally land in this region, to the amount of seventy feet or more perpendicular; for Calcutta is only a few feet above the level of the sea, and the successive peat-beds seem to imply that the subsidence of the ground was gradual or interrupted by several pauses. Below the vegetable mass they entered upon a stratum of yellowish clay about ten feet thick, containing horizontal layers of kunkar (or kankar), a nodular, concretionary, argillaceous limestone, met with abundantly at greater or less depths in all parts of the valley of the Ganges, over many thousand square miles, and always presenting the same characters, even at a distance of one thousand miles north of Calcutta. Some of this kunkar is said to be of very recent origin in deposits formed by river inundations near Saharanpoor. After penetrating 120 feet, they found loam containing water-worn fragments of mica-slate and other kinds of rock, which the current of the Ganges can no longer transport to this region. In the various beds pierced through below, consisting of clay, marl, and friable sandstone, with kunkar here and there intermixed, no organic remains of decidedly marine origin were met with. Too positive a conclusion ought not, it is true, to be drawn from such a fact, when we consider the narrow bore of the auger and its effect in crushing shells and bones. Nevertheless, it is worthy of remark, that the only fossils obtained in a recognizable state were of a fluviatile or terrestrial character. Thus, at the depth of 350 feet, the bony shell of a tortoise, or trionyx, a freshwater genus, was found in sand, resembling the living species of Bengal. From the same stratum, also, they drew up the lower half of the humerus of a ruminant, at first referred to a hyæna. It was the size and shape, says Dr. Falconer, of the shoulder-bone of the Cervus porcinus, or common hog-deer, of India. At the depth of 380 feet, clay with fragments of lacustrine shells was incumbent on what appears clearly to have been another "dirt-bed," or stratum of decayed wood, implying a period of repose of some duration, and a forest-covered land, which must have subsided 300 feet, to admit of the subsequent superposition of the overlying deposits. It has been conjectured that, at the time when this area supported trees, the land extended much farther out into the Bay of Bengal than now, and that in later times the Ganges, while enlarging its delta, has been only recovering lost ground from the sea.
At the depth of about 400 feet below the surface, an abrupt change was observed in the character of the strata, which were composed in great part of sand, shingle, and boulders, the only fossils observed being the vertebræ of a crocodile, shell of a trionyx, and fragments of wood very little altered, and similar to that buried in beds far above. These gravelly beds constituted the bottom of the section at the depth of 481 feet, when the operations were discontinued, in consequence of an accident which happened to the auger.
The occurrence of pebbles at the depths of 120 and 400 feet implies an important change in the geographical condition of the region around or near Calcutta. The fall of the river, or the general slope of the alluvial plain may have been formerly greater; or, before a general and perhaps unequal subsidence, hills once nearer the present base of the delta may have risen several hundred feet, forming islands in the bay, which may have sunk gradually, and become buried under fluviatile sediment.
Antiquity of the delta.—It would be a matter of no small scientific interest, if experiments were made to enable us to determine, with some degree of accuracy, the mean quantity of earthy matter discharged annually into the sea by the united waters of the Ganges and Brahmapootra. The Rev. Mr. Everest instituted, in 1831-2, a series of observations on the earthy matter brought down by the Ganges, at Ghazepoor, 500 miles from the sea. He found that, in 1831, the number of cubic feet of water discharged by the river per second at that place was, during the
| Rains (4 months) | 494,208 |
| Winter (5 months) | 71,200 |
| Hot weather (3 months) | 36,330 |
so that we may state in round numbers that 500,000 cubic feet per second flow down during the four months of the flood season, from June to September, and less than 60,000 per second during the remaining eight months.
The average quantity of solid matter suspended in the water during the rains was, by weight, 1/428th part; but as the water is about one-half the specific gravity of the dried mud, the solid matter discharged is 1/856th part in bulk, or 577 cubic feet per second. This gives a total of 6,082,041,600 cubic feet for the discharge in the 122 days of the rain. The proportion of sediment in the waters at other seasons was comparatively insignificant, the total amount during the five winter months being only 247,881,600 cubic feet, and during the three months of hot weather 38,154,240 cubic feet. The total annual discharge, then, would be 6,368,077,440 cubic feet.
This quantity of mud would in one year raise a surface of 228½ square miles, or a square space, each side of which should measure 15 miles, a height of one foot. To give some idea of the magnitude of this result, we will assume that the specific gravity of the dried mud is only one-half that of granite (it would, however, be more); in that case, the earthy matter discharged in a year would equal 3,184,038,720 cubic feet of granite. Now about 12½ cubic feet of granite weigh one ton; and it is computed that the great Pyramid of Egypt, if it were a solid mass of granite, would weigh about 600,000,000 tons. The mass of matter, therefore, carried down annually would, according to this estimate, more than equal in weight and bulk forty-two of the great pyramids of Egypt, and that borne down in the four months of the rains would equal forty pyramids. But if, without any conjecture as to what may have been the specific gravity of the mud, we attend merely to the weight of solid matter actually proved by Mr. Everest to have been contained in the water, we find that the number of tons weight which passed down in the 122 days of the rainy season was 339,413,760, which would give the weight of fifty-six pyramids and a half; and in the whole year 355,361,464 tons, or nearly the weight of sixty pyramids.
The base of the great Pyramid of Egypt covers eleven acres, and its perpendicular height is about five hundred feet. It is scarcely possible to present any picture to the mind which will convey an adequate conception of the mighty scale of this operation, so tranquilly and almost insensibly carried on by the Ganges, as it glides through its alluvial plain, even at a distance of 500 miles from the sea. It may, however, be stated, that if a fleet of more than eighty Indiamen, each freighted with about 1400 tons' weight of mud, were to sail down the river every hour of every day and night for four months continuously, they would only transport from the higher country to the sea a mass of solid matter equal to that borne down by the Ganges, even in this part of its course, in the four months of the flood season. Or the exertions of a fleet of about 2000 such ships going down daily with the same burden, and discharging it into the gulf, would be no more than equivalent to the operations of the great river.
The most voluminous current of lava which has flowed from Etna within historical times was that of 1669. Ferrara, after correcting Borelli's estimate, calculated the quantity of cubic yards of lava in this current at 140,000,000. Now, this would not equal in bulk one-fifth of the sedimentary matter which is carried down in a single year by the Ganges, past Ghazepoor, according to the estimate above explained; so that it would require five grand eruptions of Etna to transfer a mass of lava from the subterranean regions to the surface, equal in volume to the mud carried down in one year to that place.