Whether salt be precipitated in the Mediterranean.—It is, however, objected, that evaporation carries away only fresh water, and that the current from the Atlantic is continually bringing in salt water: why, then, do not the component parts of the waters of the Mediterranean vary? or how can they remain so nearly the same as those of the ocean? Some have imagined that the excess of salt might be carried away by an under-current running in a contrary direction to the superior; and this hypothesis appeared to receive confirmation from a late discovery, that the water taken up about fifty miles within the Straits, from a depth of 670 fathoms, contained a quantity of salt four times greater than the water of the surface. Dr. Wollaston,[457] who analyzed this water obtained by Captain Smyth, truly inferred that an under-current of such denser water flowing outward, if of equal breadth and depth with the current near the surface, would carry out as much salt below as is brought in above, although it moved with less than one-fourth part of the velocity, and would thus prevent a perpetual increase of saltness in the Mediterranean beyond that existing in the Atlantic. It was also remarked by others, that the result would be the same, if the swiftness being equal, the inferior current had only one-fourth of the volume of the superior. At the same time there appeared reason to conclude that this great specific gravity was only acquired by water at immense depths; for two specimens of the water, taken within the Mediterranean, at the distance of some hundred miles from the Straits, and at depths of 400 and even 450 fathoms, were found by Dr. Wollaston not to exceed in density that of many ordinary samples of sea-water. Such being the case, we can now prove that the vast amount of salt brought into the Mediterranean does not pass out again by the Straits; for it appears by Captain Smyth's soundings, which Dr. Wallaston had not seen, that between the capes of Trafalgar and Spartel, which are twenty-two miles apart, and where the Straits are shallowest, the deepest part, which is on the side of Cape Spartel, is only 220 fathoms. It is therefore evident, that if water sinks in certain parts of the Mediterranean, in consequence of the increase of its specific gravity, to greater depths than 220 fathoms, it can never flow out again into the Atlantic, since it must be stopped by the submarine barrier which crosses the shallowest part of the Straits of Gibraltar.

The idea of the existence of a counter-current, at a certain depth, first originated in the following circumstances:—M. De l'Aigle, commander of a privateer called the Phœnix of Marseilles, gave chase to a Dutch merchant-ship, near Ceuta Point, and coming up with her in the middle of the gut, between Tariffa and Tangier, gave her one broadside, which directly sunk her. A few days after, the sunken ship, with her cargo of brandy and oil, was cast ashore near Tangier, which is at least four leagues to the westward of the place where she went down, and to which she must have floated in a direction contrary to the course of the central current.[458] This fact, however, affords no evidence of an under-current, because the ship, when it approached the coast, would necessarily be within the influence of a lateral current, which running westward twice every twenty-four hours, might have brought back the vessel to Tangier.

What, then, becomes of the excess of salt?—for this is an inquiry of the highest geological interest. The Rhone, the Po, the Nile, and many hundred minor streams and springs, pour annually into the Mediterranean large quantities of carbonate of lime, together with iron, magnesia, silica, alumina, sulphur, and other mineral ingredients in a state of chemical solution. To explain why the influx of this matter does not alter the composition of this sea has never been regarded as a difficulty; for it is known that calcareous rocks are forming in the delta of the Rhone, in the Adriatic, on the coast of Asia Minor, and in other localities. Precipitation is acknowledged to be the means whereby the surplus mineral matter is disposed of, after the consumption of a certain portion in the secretions of testacea, zoophytes, and other marine animals. But before muriate of soda can, in like manner, be precipitated, the whole Mediterranean ought, according to the received principles of chemistry, to become as much saturated with salt as Lake Aral, the Dead Sea, or the brine-springs of Cheshire.

It is undoubtedly true, in regard to small bodies of water, that every particle must be fully saturated with muriate of soda before a single crystal of salt can be formed; such is probably the case in all natural salterns: such, for example, as those described by travellers as occurring on the western borders of the Black Sea, where extensive marshes are said to be covered by thin films of salt after a rapid evaporation of sea-water. The salt étangs of the Rhone, where salt has sometimes been precipitated in considerable abundance, have been already mentioned. In regard to the depth of the Mediterranean, it appears that between Gibraltar and Ceuta, Captain Smyth sounded to the enormous depth of 950 fathoms, and found there a gravelly bottom, with fragments of broken shells. Saussure sounded to the depth of two thousand feet, within a few yards of the shore, at Nice; and M. Bérard has lately fathomed to the depth of more than six thousand feet in several places without reaching the bottom.[459]

The central abysses, therefore, of this sea are, in all likelihood, at least as deep as the Alps are high; and, as at the depth of seven hundred fathoms only, water has been found to contain a proportion of salt four times greater than at the surface, we may presume that the excess of salt may be much greater at the depth of two or three miles. After evaporation, the surface water becomes impregnated with a slight excess of salt, and its specific gravity being thus increased, it instantly falls to the bottom, while lighter water rises to the top, or flows in laterally, being always supplied by rivers and the current from the Atlantic. The heavier fluid, when it arrives at the bottom, cannot stop if it can gain access to any lower part of the bed of the sea, not previously occupied by water of the same density.

How far this accumulation of brine can extend before the inferior strata of water will part with any of their salt, and what difference in such a chemical process the immense pressure of the incumbent ocean, or the escape of heated vapors, thermal springs, or submarine volcanic eruptions, might occasion, are questions which cannot be answered in the present state of science.

The Straits of Gibraltar are said to become gradually wider by the wearing down of the cliffs on each side at many points; and the current sets along the coast of Africa, so as to cause considerable inroads in various parts, particularly near Carthage. Near the Canopic mouth of the Nile, at Aboukir, the coast was greatly devastated in the year 1784, when a small island was nearly consumed. By a series of similar operations, the old site of the cities of Nicropolis, Taposiris, Parva and Canopus, have become a sand-bank.[460]


CHAPTER XXI.