FeetInches.
1. Black sparkling sand from the eruption of 1822, containing minute regularly formed crystals of augite and tourmaline0
2. Vegetable mould30
3. Brown incoherent tuff, full of pisolitic globules in layers, from half an inch to three inches in thickness16
4. Small scoriæ and white lapilli03
5. Brown earthy tuff, with numerous pisolitic globules09
6. Brown earthy tuff, with lapilli divided into layers40
7. Layer of whitish lapilli01
8. Gray solid tuff03
9. Pumice and white lapilli03
————
10
————

Many of the ashes in these beds are vitrified, and harsh to the touch. Crystals of leucite, both fresh and farinaceous, have been found intermixed.[549] The depth of the bed of ashes above the houses is variable, but seldom exceeds twelve or fourteen feet, and it is said that the higher part of the amphitheatre always projected above the surface; though if this were the case, it seems inexplicable that the city should never have been discovered till the year 1750. It will be observed in the above section that two of the brown, half-consolidated tuffs are filled with small pisolitic globules. This circumstance is not alluded to in the animated controversy which the Royal Academy of Naples maintained with one of their members, Signor Lippi, as to the origin of the strata incumbent on Pompeii. The mode of aggregation of these globules has been fully explained by Mr. Scrope, who saw them formed in great numbers in 1822, by rain falling during the eruption on fine volcanic sand, and sometimes also produced like hail in the air, by the mutual attraction of the minutest particles of fine damp sand. Their occurrence, therefore, agrees remarkably well with the account of heavy rain, and showers of sand and ashes recorded in history.[550]

Lippi entitled his work, "Fù il fuoco o l' acqua che sotterò Pompei ed Ercolano?"[551] and he contended that neither were the two cities destroyed in the year 79, nor by a volcanic eruption, but purely by the agency of water charged with transported matter. His letters, wherein he endeavored to dispense, as far as possible, with igneous agency, even at the foot of the volcano, were dedicated, with great propriety, to Werner, and afford an amusing illustration of the polemic style in which geological writers of that day indulged themselves. His arguments were partly of an historical nature, derived from the silence of contemporary historians, respecting the fate of the cities, which, as we have already stated, is most remarkable, and partly drawn from physical proofs. He pointed out with great clearness the resemblance of the tufaceous matter in the vaults and cellars at Herculaneum and Pompeii to aqueous alluviums, and its distinctness from ejections which had fallen through the air. Nothing, he observes, but moist pasty matter could have received the impression of a woman's breast, which was found in a vault at Pompeii, or have given the cast of a statue discovered in the theatre at Herculaneum. It was objected to him, that the heat of the tuff in Herculaneum and Pompeii was proved by the carbonization of the timber, corn, papyrus-rolls, and other vegetable substances there discovered; but Lippi replied with truth, that the papyri would have been burnt up if they had come in contact with fire, and that their being only carbonized was a clear demonstration of their having been enveloped, like fossil wood, in a sediment deposited from water. The Academicians, in their report on his pamphlet, assert, that when the amphitheatre was first cleared out, the matter was arranged on the steps in a succession of concave layers, accommodating themselves to the interior form of the building, just as snow would lie if it had fallen there. This observation is highly interesting, and points to the difference between the stratification of ashes in an open building and of mud derived from the same in the interior of edifices and cellars. Nor ought we to call the allegation in question, because it could not be substantiated at the time of the controversy after the matter had been all removed; although Lippi took advantage of this removal, and met the argument of his antagonists by requiring them to prove the fact. There is decisive evidence that no stream of lava has ever reached Pompeii since it was first built, although the foundations of the town stand upon the old leucitic lava of Somma; several streams of which, with tuff interposed, had been cut through in excavations.

Infusorial beds covering Pompeii.—A most singular and unexpected discovery has been recently made (1844-5) by Professor Ehrenberg, respecting the remote origin of many of the layers of ashes and pumice enveloping Pompeii. They are, he says, in great part, of organic and freshwater origin, consisting of the siliceous cases of microscopic infusoria. What is still more surprising, this fact proves to be by no means an isolated or solitary example of an intimate relation between organic life and the results of volcanic activity. On the Rhine, several beds of tuff and pumiceous conglomerate, resembling the mass incumbent upon Pompeii and closely connected with extinct volcanoes, are now ascertained to be made up to a great extent of the siliceous cases of infusoria (or Diatomaceæ), invisible to the naked eye, and often half fused.[552] No less than 94 distinct species have already been detected in one mass of this kind, more than 150 feet thick, at Hochsimmer, on the left bank of the Rhine, near the Laacher-see. Some of these Rhenish infusorial accumulations appear to have fallen in showers, others to have been poured out of lake-craters in the form of mud, as in the Brohl valley.

In Mexico, Peru, the Isle of France, and several other volcanic regions, analogous phenomena have been observed, and everywhere the species of infusoria belong to freshwater and terrestrial genera, except in the case of the Patagonian pumiceous tuffs, specimens of which, brought home by Mr. Darwin, are found to contain the remains of marine animalcules. In various kinds of pumice ejected by volcanoes, the microscope has revealed to Professor Ehrenberg the siliceous cases of infusoria often half obliterated by the action of heat, and the fine dust thrown out into the air during eruptions, is sometimes referable to these most minute organic substances, brought up from considerable depths, and sometimes mingled with small particles of vegetable matter.

In what manner did the solid coverings of these most minute plants and animalcules, which can only originate and increase at the surface of the earth, sink down and penetrate into subterranean cavities, so as to be ejected from the volcanic orifices? We have of late years become familiar with the fact, in the process of boring Artesian wells, that the seeds of plants, the remains of insects, and even small fish, with other organic bodies, are carried in an uninjured state by the underground circulation of waters, to the depth of many hundred feet. With still greater facility in a volcanic region we may conjecture, that water and mud full of invisible infusoria may be sucked down, from time to time, into subterranean rents and hollows in cavernous lava which has been permeated by gases, or in rocks dislocated by earthquakes. It often happens that a lake which has endured for centuries in a volcanic crater, disappears suddenly on the approach of a new eruption. Violent shocks agitate the surrounding region, and ponds, rivers, and wells are dried up. Large cavities far below may thus become filled with fen-mud chiefly composed of the more indestructible and siliceous portions of infusoria, destined perhaps to be one day ejected in a fragmentary or half-fused state, yet without the obliteration of all traces of organic structure.[553]

Herculaneum.—It was remarked that no lava has flowed over the site of Pompeii, since that city was built, but with Herculaneum the case is different. Although the substance which fills the interior of the houses and the vaults must have been introduced in a state of mud, like that found in similar situations in Pompeii; yet the superincumbent mass differs wholly in composition and thickness. Herculaneum was situated several miles nearer to the volcano, and has, therefore, been always more exposed to be covered, not only by showers of ashes, but by alluviums and streams of lava. Accordingly, masses of both have accumulated on each other above the city, to a depth of nowhere less than 70, and in many places of 112 feet.[554]

The tuff which envelops the buildings consists of comminuted volcanic ashes, mixed with pumice. A mask imbedded in this matrix has left a cast, the sharpness of which was compared by Hamilton to those in plaster of Paris; nor was the mask in the least degree scorched, as if it had been imbedded in heated matter. This tuff is porous; and, when first excavated, is soft and easily worked, but acquires a considerable degree of induration on exposure to the air. Above this lowest stratum is placed, according to Hamilton, "the matter of six eruptions," each separated from the other by veins of good soil. In these soils Lippi states that he collected a considerable number of land shells—an observation which is no doubt correct; for many snails burrow in soft soils, and some Italian species descend, when they hybernate, to the depth of five feet and more from the surface. Della Torre also informs us that there is in one part of this superimposed mass a bed of true siliceous lava (lava di pietra dura); and, as no such current is believed to have flowed till near one thousand years after the destruction of Herculaneum, we must conclude, that the origin of a large part of the covering of Herculaneum was long subsequent to the first inhumation of the place. That city, as well as Pompeii, was a seaport. Herculaneum is still very near the shore, but a tract of land, a mile in length, intervenes between the borders of the Bay of Naples and Pompeii. In both cases the gain of land is due to the filling up of the bed of the sea with volcanic matter, and not to elevation by earthquakes, for there has been no change in the relative level of land and sea. Pompeii stood on a slight eminence composed of the lavas of the ancient Vesuvius, and flights of steps led down to the water's edge. The lowermost of these steps are said to be still on an exact level with the sea.

Condition and contents of the buried cities.—After these observations on the nature of the strata enveloping and surrounding the cities, we may proceed to consider their internal condition and contents, so far at least as they offer facts of geological interest. Notwithstanding the much greater depth at which Herculaneum was buried, it was discovered before Pompeii, by the accidental circumstance of a well being sunk, in 1713, which came right down upon the theatre, where the statues of Hercules and Cleopatra were soon found. Whether this city or Pompeii, both of them founded by Greek colonies, was the more considerable, is not yet determined; but both are mentioned by ancient authors as among the seven most flourishing cities in Campania. The walls of Pompeii were three miles in circumference; but we have, as yet, no certain knowledge of the dimensions of Herculaneum. In the latter place the theatre alone is open for inspection; the Forum, Temple of Jupiter, and other buildings, having been filled up with rubbish as the workmen proceeded, owing to the difficulty of removing it from so great a depth below ground. Even the theatre is only seen by torchlight, and the most interesting information, perhaps, which the geologist obtains there, is the continual formation of stalactite in the galleries cut through the tuff; for there is a constant percolation of water charged with carbonate of lime mixed with a small portion of magnesia. Such mineral waters must, in the course of time, create great changes in many rocks; especially in lavas, the pores of which they may fill with calcareous spar, so as to convert them into amygdaloids. Some geologists, therefore, are unreasonable when they expect that volcanic rocks of remote eras should accord precisely with those of modern date; since it is obvious that many of those produced in our own time will not long retain the same aspect and internal composition.

Both at Herculaneum and Pompeii, temples have been found with inscriptions commemorating the rebuilding of the edifices after they had been thrown down by an earthquake.[555] This earthquake happened in the reign of Nero, sixteen years before the cities were overwhelmed. In Pompeii, one-fourth of which is now laid open to the day, both the public and private buildings bear testimony to the catastrophe. The walls are rent, and in many places traversed by fissures still open. Columns are lying on the ground only half hewn from huge blocks of travertin, and the temple for which they were designed is seen half repaired. In some few places the pavement had sunk in, but in general it was undisturbed, consisting of large irregular flags of lava joined neatly together, in which the carriage wheels have often worn ruts an inch and a half deep. In the wider streets, the ruts are numerous and irregular; in the narrower, there are only two, one on each side, which are very conspicuous. It is impossible not to look with some interest even on these ruts, which were worn by chariot wheels more than seventeen centuries ago; and, independently of their antiquity, it is remarkable to see such deep incisions so continuous in a stone of great hardness.