Antiquity of the cone of Etna.—It was before remarked that confined notions in regard to the quantity of past time have tended, more than any other prepossessions, to retard the progress of sound theoretical views in geology;[579] the inadequacy of our conceptions of the earth's antiquity having cramped the freedom of our speculations in this science, very much in the same way as a belief in the existence of a vaulted firmament once retarded the progress of astronomy. It was not until Descartes assumed the indefinite extent of the celestial spaces, and removed the supposed boundaries of the universe, that just opinions began to be entertained of the relative distances of the heavenly bodies; and until we habituate ourselves to contemplate the possibility of an indefinite lapse of ages having been comprised within each of the modern periods of the earth's history, we shall be in danger of forming most erroneous and partial views in geology.
If history had bequeathed to us a faithful record of the eruptions of Etna, and a hundred other of the principal active volcanoes of the globe, during the last three thousand years,—if we had an exact account of the volume of lava and matter ejected during that period, and the times of their production,—we might, perhaps, be able to form a correct estimate of the average rate of the growth of a volcanic cone. For we might obtain a mean result from the comparison of the eruptions of so great a number of vents, however irregular might be the development of the igneous action in any one of them, if contemplated singly during a brief period.
It would be necessary to balance protracted periods of inaction against the occasional outburst of paroxysmal explosions. Sometimes we should have evidence of a repose of seventeen centuries, like that which was interposed in Ischia, between the end of the fourth century B. C., and the beginning of the fourteenth century of our era.[580] Occasionally a tremendous eruption, like that of Jorullo, would be recorded, giving rise, at once, to a considerable mountain.
If we desire to approximate to the age of a cone such as Etna, we ought first to obtain some data in regard to the thickness of matter which has been added during the historical era, and then endeavor to estimate the time required for the accumulation of such alternating lavas and beds of sand and scoriæ as are superimposed upon each other in the Val del Bove; afterwards we should try to deduce, from observations on other volcanoes, the more or less rapid increase of burning mountains in all the different stages of their growth.
There is a considerable analogy between the mode of increase of a volcanic cone and that of trees of exogenous growth. These trees augment, both in height and diameter, by the successive application externally of cone upon cone of new ligneous matter; so that if we make a transverse section near the base of the trunk, we intersect a much greater number of layers than nearer to the summit. When branches occasionally shoot out from the trunk, they first pierce the bark, and then, after growing to a certain size, if they chance to be broken off, they may become inclosed in the body of the tree, as it augments in size, forming knots in the wood, which are themselves composed of layers of ligneous matter, cone within cone.
In like manner, a volcanic mountain, as we have seen, consists of a succession of conical masses enveloping others, while lateral cones, having a similar internal structure, often project, in the first instance, like branches from the surface of the main cone, and then becoming buried again, are hidden like the knots of a tree.
We can ascertain the age of an oak or pine by counting the number of concentric rings of annual growth seen in a transverse section near the base, so that we may know the date at which the seedling began to vegetate. The Baobab-tree of Senegal (Adansonia digitata) is supposed to exceed almost any other in longevity. Adanson inferred that one which he measured, and found to be thirty feet in diameter, had attained the age of 5150 years. Having made an incision to a certain depth, he first counted three hundred rings of annual growth, and observed what thickness the tree had gained in that period. The average rate of growth of younger trees, of the same species, was then ascertained, and the calculation made according to a supposed mean rate of increase. De Candolle considers it not improbable that the celebrated Taxodium of Chapultepec, in Mexico (Cupressus disticha, Linn.), which is 117 feet in circumference, may be still more aged.[581]
It is, however, impossible, until more data are collected respecting the average intensity of the volcanic action, to make any thing like an approximation to the age of a cone like Etna; because, in this case, the successive envelopes of lava and scoriæ are not continuous, like the layers of wood in a tree, and afford us no definite measure of time. Each conical envelope is made up of a great number of distinct lava-currents and showers of sand and scoriæ, differing in quantity, and which may have been accumulated in unequal periods of time. Yet we cannot fail to form the most exalted conception of the antiquity of this mountain, when we consider that its base is about ninety miles in circumference; so that it would require ninety flows of lava, each a mile in breadth at their termination, to raise the present foot of the volcano as much as the average height of one lava-current.
There are no records within the historical era which lead to the opinion that the altitude of Etna has materially varied within the last two thousand years. Of the eighty most conspicuous minor cones which adorn its flanks, only one of the largest, Monti Rossi, has been produced within the times of authentic history. Even this hill, thrown up in the year 1669, although 450 feet in height, only ranks as a cone of second magnitude. Monte Minardo, near Bronte, rises, even now, to the height of 750 feet, although its base has been elevated by more modern lavas and ejections. The dimensions of these larger cones appear to bear testimony to paroxysms of volcanic activity, after which we may conclude, from analogy, that the fires of Etna remained dormant for many years—since nearly a century of rest has sometimes followed a violent eruption in the historical era. It must also be remembered, that of the small number of eruptions which occur in a century, one only is estimated to issue from the summit of Etna for every two that proceed from the sides. Nor do all the lateral eruptions give rise to such cones as would be reckoned amongst the smallest of the eighty hills above enumerated; some of them produce merely insignificant monticules, which are soon afterwards buried by showers of ashes.
How many years then must we not suppose to have been expended in the formation of the eighty cones? It is difficult to imagine that a fourth part of them have originated during the last thirty centuries. But if we conjecture the whole of them to have been formed in twelve thousand years, how inconsiderable an era would this portion of time constitute in the history of the volcano! If we could strip off from Etna all the lateral monticules now visible, together with the lavas and scoriæ that have been poured out from them, and from the highest crater, during the period of their growth, the diminution of the entire mass would be extremely slight: Etna might lose, perhaps, several miles in diameter at its base, and some hundreds of feet in elevation; but it would still be the loftiest of Sicilian mountains, studded with other cones, which would be recalled, as it were, into existence by the removal of the rocks under which they are now buried.