The dotted lines in the annexed figure are an imaginary restoration of the upper part of the cone, now removed by the waves: the strong lines represent the part of the volcano which is still under water: in the centre is a great column, or dike, of solid lava, two hundred feet in diameter, supposed to fill the space by which the gaseous fluids rose; and on each side of the dike is a stratified mass of scoriæ and fragmentary lava. The solid nucleus of the reef, where the black rock is now found, withstands the movements of the sea; while the surrounding loose tuffs are cut away to a somewhat lower level. In this manner the lava, which was the lowest part of the island, or, to speak more correctly, which scarcely ever rose above the level of the sea when the island existed, has now become the highest point in the reef.

No appearances observed, either during the eruption or since the island disappeared, gave the least support to the opinion promulgated by some writers, that part of the ancient bed of the sea had been lifted up bodily.

The solid products, says Dr. John Davy, whether they consisted of sand, light cinders, or vesicular lava, differed more in form than in composition. The lava contained augite; and the specific gravity was 2·07 and 2·70. When the light spongy cinder, which floated on the sea, was reduced to fine powder by trituration, and the greater part of the entangled air got rid of, it was found to be of the specific gravity 2·64; and that of some of the sand which fell in the eruption was 2·75;[600] so that the materials equalled ordinary granites in weight and solidity. The only gas evolved in any considerable quantity was carbonic acid.[601]

Submarine eruptions in mid-Atlantic.—In the Nautical Magazine for 1835, p. 642, and for 1838, p. 361, and in the Comptes Rendus, April, 1838, accounts are given of a series of volcanic phenomena, earthquakes, troubled water, floating scoriæ and columns of smoke, which have been observed at intervals since the middle of the last century, in a space of open sea between longitudes 20° and 22° west, about half a degree south of the equator. These facts, says Mr. Darwin, seem to show, that an island or an archipelago is in process of formation in the middle of the Atlantic; a line joining St. Helena and Ascension would, if prolonged, intersect this slowly nascent focus of volcanic action.[602] Should land be eventually formed here, it will not be the first that has been produced by igneous action in this ocean since it was inhabited by the existing species of testacea. At Porto Praya in St. Jago, one of the Azores, a horizontal, calcareous stratum occurs, containing shells of recent marine species, covered by a great sheet of basalt eighty feet thick.[603] It would be difficult to estimate too highly the commercial and political importance which a group of islands might acquire, if in the next two or three thousand years they should rise in mid-ocean between St. Helena and Ascension.

CANARY ISLANDS.

Eruption in Lancerote, 1730 to 1736.—The effects of an eruption which happened in Lancerote, one of the Canary Islands, between the years 1730 and 1736, were very remarkable; and a detailed description has been published by Von Buch, who had an opportunity, when he visited that island in 1815, of comparing the accounts transmitted to us of the event, with the present state and geological appearances of the country.[604] On the 1st of September, 1730, the earth split open on a sudden two leagues from Yaira. In one night a considerable hill of ejected matter was thrown up; and, a few days later, another vent opened, and gave out a lava-stream, which overran Chinanfaya and other villages. It flowed first rapidly, like water, but became afterwards heavy and slow, like honey. On the 7th of September an immense rock was protruded from the bottom of the lava with a noise like thunder, and the stream was forced to change its course from N. to N. W., so that St. Catalina and other villages were overflowed.

Whether this mass was protruded by an earthquake, or was a mass of ancient lava, blown up like that before mentioned in 1783 in Iceland, is not explained.

On the 11th of September more lava flowed out, and covered the village of Maso entirely, and for the space of eight days precipitated itself with a horrible roar into the sea. Dead fish floated on the waters in indescribable multitudes, or were thrown dying on the shore. After a brief interval of repose, three new openings broke forth immediately from the site of the consumed St. Catalina, and sent out an enormous quantity of lapilli, sand, and ashes. On the 28th of October the cattle throughout the whole country dropped lifeless to the ground, suffocated by putrid vapors, which condensed and fell down in drops. On the 1st of December a lava-stream reached the sea, and formed an island, round which dead fish were strewed.

Number of cones thrown up.—It is unnecessary here to give the details of the overwhelming of other places by fiery torrents, or of a storm which was equally new and terrifying to the inhabitants, as they had never known one in their country before. On the 10th of January, 1731, a high hill was thrown up, which, on the same day, precipitated itself back again into its own crater; fiery brooks of lava flowed from it to the sea. On the 3d of February a new cone arose. Others were thrown up in March, and poured forth lava-streams. Numerous other volcanic cones were subsequently formed in succession, till at last their number amounted to about thirty. In June, 1731, during a renewal of the eruptions, all the banks and shores in the western part of the island were covered with dying fish, of different species, some of which had never before been seen. Smoke and flame arose from the sea, with loud detonations. These dreadful commotions lasted without interruption for five successive years, so that a great emigration of the inhabitants became necessary.

Their linear direction.—As to the height of the new cones, Von Buch was assured that the formerly great and flourishing St. Catalina lay buried under hills 400 feet in height; and he observes that the most elevated cone of the series rose 600 feet above its base, and 1378 feet above the sea, and that several others were nearly as high. The new vents were all arranged in one line, about two geographical miles long, and in a direction nearly east and west. If we admit the probability of Von Buch's conjecture, that these vents opened along the line of a cleft, it seems necessary to suppose that this subterranean fissure was only prolonged upwards to the surface by degrees, and that the rent was narrow at first, as is usually the case with fissures caused by earthquakes. Lava and elastic fluids might escape from some point on the rent where there was least resistance, till, the first aperture becoming obstructed by ejections and the consolidation of lava, other orifices burst open in succession along the line of the original fissure. Von Buch found that each crater was lowest on that side on which lava had issued; but some craters were not breached, and were without any lava streams. In one of these were open fissures, out of which hot vapors rose, which in 1815 raised the thermometer to 145° Fahrenheit, and was probably at the boiling point lower down. The exhalations seemed to consist of aqueous vapor; yet they could not be pure steam, for the crevices were incrusted on either side by siliceous sinter (an opal-like hydrate of silica of a white color), which extended almost to the middle. This important fact attests the length of time during which chemical processes continue after eruptions, and how open fissures may be filled up laterally by mineral matter, sublimed from volcanic exhalations. The lavas of this eruption covered nearly a third of the whole island, often forming on slightly inclined planes great horizontal sheets several square leagues in area, resembling very much the basaltic platforms of Auvergne.