The mean density of the earth has been computed by Laplace to be about 5½, or more than five times that of water. Now the specific gravity of many of our rocks is from 2½ to 3, and the greater part of the metals range between that density and 21. Hence some have imagined that the terrestrial nucleus may be metallic—that it may correspond, for example, with the specific gravity of iron, which is about 7. But here a curious question arises in regard to the form which materials, whether fluid or solid, might assume, if subjected to the enormous pressure which must obtain at the earth's centre. Water, if it continued to decrease in volume according to the rate of compressibility deduced from experiment, would have its density doubled at the depth of ninety-three miles, and be as heavy as mercury at the depth of 362 miles. Dr. Young computed that, at the earth's centre, steel would be compressed into one-fourth, and stone into one-eighth of its bulk.[745] It is more than probable, however, that after a certain degree of condensation, the compressibility of bodies may be governed by laws altogether different from those which we can put to the test of experiment; but the limit is still undetermined, and the subject is involved in such obscurity, that we cannot wonder at the variety of notions which have been entertained respecting the nature and conditions of the central nucleus. Some have conceived it to be fluid, others solid; some have imagined it to have a cavernous structure, and have even endeavored to confirm this opinion by appealing to observed irregularities in the vibrations of the pendulum in certain countries.
An attempt has recently been made by Mr. Hopkins to determine the least thickness which can be assigned to the solid crust of the globe, if we assume the whole to have been once perfectly fluid, and a certain portion of the exterior to have acquired solidity by gradual refrigeration. This result he has endeavored to obtain by a new solution of the delicate problem of the processional motion of the pole of the earth. It is well known that while the earth revolves round the sun the direction of its axis remains very nearly the same, i. e. its different positions in space are all nearly parallel to each other. This parallelism, however, is not accurately preserved, so that the axis, instead of coming exactly into the position which it occupied a year before, becomes inclined to it at a very small angle, but always retaining very nearly the same inclination to the plane of the earth's orbit. This motion of the pole changes the position of the equinoxes by about fifty seconds annually, and always in the same direction. Thus the pole-star, after a certain time, will entirely lose its claim to that appellation, until in the course of somewhat more than 25,000 years the earth's axis shall again occupy its present angular position, and again point very nearly as now to the pole-star. This motion of the axis is called precession. It is caused by the attraction of the sun and moon, and principally the moon, on the protuberant parts of the earth's equator; and if these parts were solid to a great depth, the motion thus produced would differ considerably from that which would exist if they were perfectly fluid, and incrusted over with a thin shell only a few miles thick. In other words, the disturbing action of the moon will not be the same upon a globe all solid and upon one nearly all fluid, or it will not be the same upon a globe in which the solid shell forms one-half of the mass, and another in which it forms only one-tenth.
Mr. Hopkins has, therefore, calculated the amount of precessional motion which would result if we assume the earth to be constituted as above stated; i. e. fluid internally, and enveloped by a solid shell; and he finds that the amount will not agree with the observed motion, unless the crust of the earth be of a certain thickness. In calculating the exact amount some ambiguity arises in consequence of our ignorance of the effect of pressure in promoting the solidification of matter at high temperatures. The hypothesis least favorable for a great thickness is found to be that which assumes the pressure to produce no effect on the process of solidification. Even on this extreme assumption the thickness of the solid crust must be nearly four hundred miles, and this would lead to the remarkable result that the proportion of the solid to the fluid part would be as 49 to 51, or, to speak in round numbers, there would be nearly as much solid as fluid matter in the globe. The conclusion, however, which Mr. Hopkins announces as that to which his researches have finally conducted him, is thus expressed: "Upon the whole, then, we may venture to assert that the minimum thickness of the crust of the globe, which can be deemed consistent with the observed amount of precession, cannot be less than one-fourth or one-fifth of the earth's radius." That is from 800 to 1000 miles.[746]
It will be remarked, that this is a minimum, and any still greater amount would be quite consistent with the actual phenomena; the calculations not being opposed to the supposition of the general solidity of the entire globe. Nor do they preclude us from imagining that great lakes or seas of melted matter may be distributed through a shell 400 or 800 miles thick, provided they be so inclosed as to move with it, whatever motion of rotation may be communicated by the disturbing forces of the sun and moon.
Central heat.—The hypothesis of internal fluidity calls for the more attentive consideration, as it has been found that the heat in mines augments in proportion as we descend. Observations have been made, not only on the temperature of the air in mines, but on that of the rocks, and on the water issuing from them. The mean rate of increase, calculated from results obtained in six of the deepest coal mines in Durham and Northumberland, is 1° Fahr. for a descent of forty-four English feet.[747] A series of observations, made in several of the principal lead and silver mines in Saxony, gave 1° Fahr. for every sixty-five feet. In this case, the bulb of the thermometer was introduced into cavities purposely cut in the solid rock at depths varying from 200 to above 900 feet. But in other mines of the same country, it was necessary to descend thrice as far for each degree of temperature.[748]
A thermometer was fixed in the rock of the Dolcoath mine, in Cornwall, by Mr. Fox, at the great depth of 1380 feet, and frequently observed during eighteen months; the mean temperature was 68° Fahr., that of the surface being 50°, which gives 1° for every seventy-five feet.
Kupffer, after an extensive comparison of the results in different countries, makes the increase 1° F. for about every thirty-seven English feet.[749] M. Cordier announces, as the result of his experiments and observations on the temperature of the interior of the earth, that the heat increases rapidly with the depth; but the increase does not follow the same law over the whole earth, being twice or three times as much in one country as in another, and these differences are not in constant relation either with the latitudes or longitudes of places.[750] He is of opinion, however, that the increase would not be overstated at 1° Cent. for every twenty-five metres, or about 1° F. for every forty-five feet.[751] The experimental well bored at Grenelle, near Paris, gave about 1° F. for every sixty English feet, when they had reached a depth of 1312 feet.
Some writers have endeavored to refer these phenomena (which, however discordant as to the ratio of increasing heat, appear all to point one way) to the condensation of air constantly descending from the surface into the mines. For the air under pressure would give out latent heat, on the same principle as it becomes colder when rarefied in the higher regions of the atmosphere. But, besides that the quantity of heat is greater than could be supposed to flow from this source, the argument has been answered in a satisfactory manner by Mr. Fox, who has shown, that in the mines of Cornwall the ascending have generally a higher temperature than the descending aerial currents. The difference between them was found to vary from 9° to 17° F.; a proof that, instead of imparting heat, these currents actually carry off a large quantity from the mines.[752]
If we adopt M. Cordier's estimate of 1° F. for every 45 feet of depth as the mean result, and assume, with the advocates of central fluidity, that the increasing temperature is continued downwards, we should reach the ordinary boiling point of water at about two miles below the surface, and at the depth of about twenty-four miles should arrive at the melting point of iron, a heat sufficient to fuse almost every known substance. The temperature of melted iron was estimated at 21,000° F., by Wedgwood; but his pyrometer gives, as is now demonstrated, very erroneous results. Professor Daniell ascertained that the point of fusion is 2,786° F.[753]