It has been alleged by Professor Bischoff that the slight specific gravity of the metals of the alkalies is fatal to Davy's hypothesis, for if the mean density of the earth, as determined by astronomers, surpass that of all kinds of rocks, these metals cannot exist, at least not in great quantities in the interior of the earth.[771] But Dr. Daubeny has shown, that if we take the united specific gravity of potassium, sodium, silicon, iron, and all the materials which, when united with oxygen, constitute ordinary lava, and then compare their weight with lava of equal bulk, the difference is not very material, the specific gravity of the lava only exceeding by about one-fourth that of the unoxidized metals. Besides, at great depths, the metallic bases of the earths and alkalies may very probably be rendered heavier by pressure.[772] Nor is it fair to embarrass the chemical theory of volcanoes with a doctrine so purely gratuitous, as that which supposes the entire nucleus of the planet to have been at first composed of unoxidated metals.

Professor Bunsen of Marburg, after analyzing the gases which escape from the volcanic fumeroles and solfataras of Iceland, and after calculating the quantity of hydrogen evolved between two eruptions, affirms, in contradiction of opinions previously entertained, that the hydrogen bears a perfect relation in quantity to the magnitude of the streams of lava, assuming the fusion of these last to have been the result of the heat evolved during the oxidation of alkaline and earthy metals, and this to have been brought about by the decomposition of water. Yet after having thus succeeded in removing the principal objection once so triumphantly urged against Davy's hypothesis, Bunsen concludes by declaring that the hydrogen evolved in volcanic regions cannot have been generated by the decomposition of water coming in contact with alkaline and earthy metallic bases. For, says the Professor, this process presupposes the prevalence of a temperature in which carbonic acid cannot exist in contact with hydrogen without suffering a partial reduction to carbonic oxide; "and not a trace of carbonic oxide is ever found in volcanic exhalations."[773] At the same time it will be seen, by consulting the able memoirs of the Marburg chemist, that he supposes many energetic kinds of chemical action to be continually going on in the interior of the earth, capable of causing the disengagement of hydrogen; and there can be no doubt that this gas may be a source of innumerable new changes, capable of producing the local development of internal heat.

Cause of volcanic eruptions.—The most probable causes of a volcanic outburst at the surface have been in a great degree anticipated in the preceding speculations on the liquefaction of rocks and the generation of gases. When a minute hole is bored in a tube filled with gas condensed into a liquid, the whole becomes instantly aeriform, or, as some writers have expressed it, "flashes into vapor," and often bursts the tube. Such an experiment may represent the mode in which gaseous matter may rush through a rent in the rocks, and continue to escape for days or weeks through a small orifice, with an explosive power sufficient to reduce every substance which opposes its passage into small fragments or even dust. Lava may be propelled upwards at the same time, and ejected in the form of scoriæ. In some places, where the fluid lava lies at the bottom of a deep fissure, communicating on the one hand with the surface, and on the other with a cavern in which a considerable body of vapor has been formed, there may be an efflux of lava, followed by the escape of gas. Eruptions often commence and close with the discharge of vapor; and, when this is the case, the next outburst may be expected to take place by the same vent, for the concluding evolution of elastic fluids will keep open the duct, and leave it unobstructed.

The breaking out of lava from the side or base of a lofty cone, rather than from the summit, may be attributed to the hydrostatic pressure to which the flanks of the mountain are exposed, when the column of lava has risen to a great height. Or if, before it has reached the top, there should happen to be any stoppage in the main duct, the upward pressure of the ascending column of gas and lava may burst a lateral opening.

In the case however of Mount Loa, in the Sandwich Islands, there appears to be a singular want of connection or sympathy between the eruptions of the central and the great lateral vent. The great volcanic cone alluded to rises to the height of 13,760 feet above the level of the sea, having a crater at its summit, from which powerful streams of lava have flowed in recent times, and having another still larger crater, called Kilauea, on its southeastern slope, about 4000 feet above the sea. This lateral cavity resembles a huge quarry cut in the mountain's side, being about 1000 feet deep when in its ordinary state. It is seven miles and a half in circuit, and scattered over its bottom, at different levels, are lakes and pools of lava, always in a state of ebullition. The liquid in one of these will sometimes sink 100 or 150 feet, while it is overflowing in another at a higher elevation, there being, it should seem, no communication between them. In like manner, lava overflows in the summit crater of Mount Loa, nearly 14,000 feet high, while the great lateral cauldron just alluded to (of Kilauea) continues as tranquil as usual, affording no relief to any part of the gases or melted matter which are forcing their way upwards in the centre of the mountain. "How," asks Mr. Dana, "if there were any subterranean channel connecting the two great vents, could this want of sympathy exist? How, according to the laws of hydrostatic pressure, can a column of fluid stand 10,000 feet higher in one leg of the siphon than in the other?" The eruptions, he observes, are not paroxysmal; on the contrary, the lava rises slowly and gradually to the summit of the lofty cone, and then escapes there without any commotion manifesting itself in Kilauea, a gulf always open on the flanks of the same mountain. One conclusion, he says, is certain, namely, that volcanoes are no safety valves as they have been called; for here two independent and apparently isolated centres of volcanic activity, only sixteen miles distant from each other, are sustained in one and the same cone.[774]

Without pretending to solve this enigma, I cannot refrain from remarking, that the supposed independence of several orifices of eruption in one crater like Kilauea, when adduced in confirmation of the doctrine of two distinct sources of volcanic action underneath one mountain, proves too much. No one can doubt, that the pools of lava in Kilauea have been derived from some common reservoir, and have resulted from a combination of causes commonly called volcanic, which are at work in the interior at some unknown distance below. These causes have given rise in Mount Loa to eruptions from many points, but principally from one centre, so that a vast dome of ejected matter has been piled up. The subsidiary crater has evidently never given much relief to the imprisoned, heated, and liquefied matter, for Kilauea does not form a lateral protuberance interfering with the general shape or uniform outline of Mount Loa.

Geysers of Iceland.—As aqueous vapor constitutes the most abundant of the aeriform products of volcanoes in eruption, it may be well to consider attentively a case in which steam is exclusively the moving power—that of the Geysers of Iceland. These intermittent hot springs occur in a district situated in the southwestern division of Iceland, where nearly one hundred of them are said to break out within a circle of two miles. That the water is of atmospheric origin, derived from rain and melted snow, is proved, says Professor Bunsen, by the nitrogen which rises from them either pure or mixed with other gases. The springs rise through a thick current of lava, which may perhaps have flowed from Mount Hecla, the summit of that volcano being seen from the spot at the distance of more than thirty miles. In this district the rushing of water is sometimes heard in chasms beneath the surface; for here, as on Etna, rivers flow in subterranean channels through the porous and cavernous lavas. It has more than once happened, after earthquakes, that some of the boiling fountains have increased or diminished in violence and volume, or entirely ceased, or that new ones have made their appearance—changes which may be explained by the opening of new rents and the closing of pre-existing fissures.

Few of the Geysers play longer than five or six minutes at a time, although sometimes half an hour. The intervals between their eruptions are for the most part very irregular. The Great Geyser rises out of a spacious basin at the summit of a circular mound composed of siliceous incrustations deposited from the spray of its waters. The diameter of this basin, in one direction, is fifty-six feet, and forty-six in another. (See [fig. 94].) In the centre is a pipe seventy-eight feet in perpendicular depth, and from eight to ten feet in diameter, but gradually widening, as it rises into the basin. The inside of the basin is whitish, consisting of a siliceous crust, and perfectly smooth, as are likewise two small channels on the sides of the mound, down which the water escapes when the bowl is filled to the margin. The circular basin is sometimes empty, as represented in the following sketch; but is usually filled with beautifully transparent water in a state of ebullition. During the rise of the boiling water in the pipe, especially when the ebullition is most violent, and when the water is thrown up in jets, subterranean noises are heard, like the distant firing of cannon, and the earth is slightly shaken. The sound then increases and the motion becomes more violent, till at length a column of water is thrown up, with loud explosions, to the height of one or two hundred feet. After playing for a time like an artificial fountain, and giving off great clouds of vapor, the pipe or tube is emptied; and a column of steam, rushing up with amazing force and a thundering noise, terminates the eruption.

Fig. 94.