How changes in physical Geography affect the distribution of species.—The numbers and distribution of particular species are affected in two ways, by changes in the physical geography of the earth:—First, these changes promote or retard the migrations of species; secondly, they alter the physical conditions of the localities which species inhabit. If the ocean should gradually wear its way through an isthmus, like that of Suez, it would open a passage for the intermixture of the aquatic tribes of two seas previously disjoined, and would, at the same time, close a free communication which the terrestrial plants and animals of two continents had before enjoyed. These would be, perhaps, the most important consequences, in regard to the distribution of species, which would result from the breach made by the sea in such a spot; but there would be others of a distinct nature, such as the conversion of a certain tract of land, which formed the isthmus, into sea. This space, previously occupied by terrestrial plants and animals, would be immediately delivered over to the aquatic; a local revolution which might have happened in innumerable other parts of the globe, without being attended by any alteration in the blending together of species of two distinct provinces.

Rate of change of species cannot be uniform.—This observation leads me to point out one of the most interesting conclusions to which we are led by the contemplation of the vicissitudes of the inanimate world in relation to those of the animate. It is clear that, if the agency of inorganic causes be uniform, as I have supposed, they must operate very irregularly on the state of organic beings, so that the rate according to which these will change in particular regions will not be equal in equal periods of time.

I am not about to advocate the doctrine of general catastrophes recurring at certain intervals, as in the ancient Oriental cosmogonies, nor do I doubt that, if very considerable periods of equal duration could be compared one with another, the rate of change in the living, as well as in the inorganic world, might be nearly uniform; but if we regard each of the causes separately, which we know to be at present the most instrumental in remodelling the state of the surface, we shall find that we must expect each to be in action for thousands of years, without producing any extensive alterations in the habitable surface, and then to give rise, during a very brief period, to important revolutions.

Illustration derived from subsidences.—I shall illustrate this principle by a few of the most remarkable examples which present themselves. In the course of the last century, as we have seen, a considerable number of instances are recorded of the solid surface, whether covered by water or not, having been permanently sunk or upraised by subterranean movements. Most of these convulsions are only accompanied by temporary fluctuations in the state of limited districts, and a continued repetition of these events for thousands of years might not produce any decided change in the state of many of those great zoological or botanical provinces of which I have sketched the boundaries.

When, for example, large parts of the ocean and even of inland seas are a thousand fathoms or upwards in depth, it is a matter of no moment to the animate creation that vast tracts should be heaved up many fathoms at certain intervals, or should subside to the same amount. Neither can any material revolution be produced in South America either in the terrestrial or the marine plants or animals by a series of shocks on the coast of Chili, each of which, like that of Penco, in 1751, should uplift the coast about twenty-five feet. Nor if the ground sinks fifty feet at a time, as in the harbor of Port Royal, in Jamaica, in 1692, will such alterations of level work any general fluctuations in the state of organic beings inhabiting the West Indian Islands, or the Caribbean Sea.

It is only when the subterranean powers, by shifting gradually the points where their principal force is developed, happen to strike upon some particular region where a slight change of level immediately affects the distribution of land and water, or the state of the climate, or the barriers between distinct groups of species over extensive areas, that the rate of fluctuation becomes accelerated, and may, in the course of a few years or centuries, work mightier changes than had been experienced in myriads of antecedent years.

Thus, for example, a repetition of subsidences causing the narrow isthmus of Panama to sink down a few hundred feet, would, in a few centuries, bring about a great revolution in the state of the animate creation in the western hemisphere. Thousands of aquatic species would pass, for the first time, from the Caribbean Sea into the Pacific; and thousands of others, before peculiar to the Pacific Ocean, would make their way into the Caribbean Sea, the Gulf of Mexico, and the Atlantic. A considerable modification would probably be occasioned by the same event in the direction or volume of the Gulf stream, and thereby the temperature of the sea and the contiguous lands might be altered as far as the influence of that current extends. A change of climate might thus be produced in the ocean from Florida to Spitzbergen, and in many countries of North America, Europe, and Greenland. Not merely the heat, but the quantity of rain which falls, would be altered in certain districts, so that many species would be excluded from tracts where they before flourished: others would be reduced in number; and some would thrive more and multiply. The seeds also and the fruits of plants would no longer be drifted in precisely the same directions, nor the eggs of aquatic animals; neither would species be any longer impeded in their migrations towards particular stations before shut out from them by their inability to cross the mighty current.

Let us take another example from a part of the globe which is at present liable to suffer by earthquakes, namely, the low sandy tract which intervenes between the sea of Azof and the Caspian. If there should occur a sinking down to a trifling amount, and such ravines should be formed as might be produced by a few earthquakes, not more considerable than have fallen within our limited observation during the last 150 years, the waters of the Sea of Azof would pour rapidly into the Caspian, which, according to the measurements lately made by the Academy of St. Petersburg, is 84 feet below the level of the Black Sea.[984] The Sea of Azof would immediately borrow from the Black Sea, that sea again from the Mediterranean, and the Mediterranean from the Atlantic, so that an inexhaustible current would pour down into the low tracts of Asia bordering the Caspian, by which all the sandy salt steppes adjacent to that sea would be inundated. An area of several thousand square leagues, now below the level of the Mediterranean, would be converted from land into sea.

Illustration derived from the elevation of land.—Let us next imagine a few cases of the elevation of land of small extent at certain critical points, as, for example, in the shallowest part of the Straits of Gibraltar, where the deepest soundings from the African to the European side give only 220 fathoms. In proportion as this submarine barrier of rock was upheaved, the whole channel would be contracted in width and depth, and the volume of water which the current constantly flowing from the Atlantic pours into the Mediterranean would be lessened. But the loss of the inland sea by evaporation would remain the same; so that being no longer able to draw on the ocean for a supply sufficient to restore its equilibrium, it must sink, and leave dry a certain portion of land around its borders. The current which now flows constantly out of the Black Sea into the Mediterranean would then rush in more rapidly, and the level of the Mediterranean would be thereby prevented from falling so low; but the level of the Black Sea would, for the same reason, sink; so that when, by a continued series of elevatory movements, the Straits of Gibraltar had become completely closed up, we might expect large and level sandy steppes to surround both the Black Sea and Mediterranean, like those occurring at present on the skirts of the Caspian and the Lake of Aral. The geographical range of hundreds of aquatic species would be thereby circumscribed, and that of hundreds of terrestrial plants and animals extended.

A line of submarine volcanos crossing the channel of some strait, and gradually choking it up with ashes and lava, might produce a new barrier as effectually as a series of earthquakes; especially if thermal springs, charged with carbonate of lime, silica, and other mineral ingredients, should promote the rapid multiplication of corals and shells, and cement them together with solid matter precipitated during the intervals between eruptions. Suppose in this manner a stoppage to be caused of the Bahama channel between the bank of that name and the coast of Florida. This insignificant revolution, confined to a mere spot in the bottom of the ocean, would, by diverting the main current of the Gulf stream, give rise to extensive changes in the climate and distribution of animals and plants inhabiting the northern hemisphere.