Felling of forests.—The felling of forests has been attended, in many countries, by a diminution of rain, as in Barbadoes and Jamaica.[998] For in tropical countries, where the quantity of aqueous vapor in the atmosphere is great, but where, on the other hand, the direct rays of the sun are most powerful, any impediment to the free circulation of air, or any screen which shades the earth from the solar rays, becomes a source of humidity; and wherever dampness and cold have begun to be generated by such causes, the condensation of vapor continues. The leaves, moreover, of all plants are alembics, and some of those in the torrid zone have the remarkable property of distilling water, thus contributing to prevent the earth from becoming parched up.

Distribution of the American forests.—There can be no doubt then, that the state of the climate, especially the humidity of the atmosphere, influences vegetation, and that, in its turn, vegetation re-acts upon the climate: but some writers seem to have attributed too much importance to the influence of forests, particularly those of America, as if they were the primary cause of the moisture of the climate.

The theory of a modern author on this subject "that forests exist in those parts of America only where the predominant winds carry with them a considerable quantity of moisture from the ocean," seems far more rational. In all countries, he says, "having a summer heat exceeding 70°, the presence or absence of natural woods, and their greater or less luxuriance, may be taken as a measure of the amount of humidity, and of the fertility of the soil. Short and heavy rains in a warm country will produce grass, which, having its roots near to the surface, springs up in a few days, and withers when the moisture is exhausted; but transitory rains, however heavy, will not nourish trees; because, after the surface is saturated, the remainder of the water runs off, and the moisture lodged in the soil neither sinks deep enough, nor is in sufficient quantity, to furnish the giants of the forests with the necessary sustenance. It may be assumed that twenty inches of rain falling moderately or at intervals, will leave a greater permanent supply in the soil than forty inches falling, as it sometimes does in the torrid zone, in as many hours."[999]

"In all regions," he continues, "where ranges of mountains intercept the course of the constant or predominant winds, the country on the windward side of the mountains will be moist, and that on the leeward dry; and hence parched deserts will generally be found on the west side of countries within the tropics, and on the east side of those beyond them, the prevailing winds in these cases being generally in opposite directions. On this principle, the position of forests in North and South America may be explained. Thus, for example, in the region within the thirtieth parallel, the moisture swept up by the trade-wind from the Atlantic is precipitated in part upon the mountains of Brazil, which are but low, and so distributed as to extend far into the interior. The portion which remains is borne westward, and, losing a little as it proceeds, is at length arrested by the Andes, where it falls down in showers on their summits. The aërial current, now deprived of all the humidity with which it can part, arrives in a state of complete exsiccation at Peru, where consequently no rain falls. But in the region of America, beyond the thirtieth parallel, the Andes serve as a screen to intercept the moisture brought by the prevailing winds from the Pacific Ocean: rains are copious on their summits, and in Chili on their western declivities; but none falls on the plains to the eastward, except occasionally when the wind blows from the Atlantic."[1000]

I have been more particular in explaining these views, because they appear to place in a true light the dependence of vegetation on climate, the humidity being increased, and more uniformly diffused throughout the year, by the gradual spreading of wood.

It has been affirmed, that formerly, when France and England were covered with wood, Europe was much colder than at present; that the winters in Italy were longer, and that the Seine, and many other rivers, froze more regularly every winter than now. M. Arago, in an essay on this subject, has endeavored to show, by tables of observations on the congelation of the Rhine, Danube, Rhone, Po, Seine, and other rivers, at different periods, that there is no reason to believe the cold to have been in general more intense in ancient times.[1001] He admits, however, that the climate of Tuscany has been so far modified, by the removal of wood, as that the winters are less cold; but the summers also, he contends, are less hot than of old; and the summers, according to him, were formerly hotter in France than in our own times. His evidence is derived chiefly from documents showing that wine was made three centuries ago in the Vivarais and several other provinces, at an earlier season, at greater elevations, and in higher latitudes, than are now found suitable to the vine.

There seems little doubt that in the United States of North America the rapid clearing of the country has rendered the winters less severe and the summers less hot; in other words, the extreme temperatures of January and July have been observed from year to year to approach somewhat nearer to each other. Whether in this case, or in France, the mean temperature has been raised, seems by no means as yet decided; but there is no doubt that the climate has become, as Buffon would have said, "less excessive."

I have before shown, when treating of the excavation of new estuaries in Holland by inroads of the ocean, as also of the changes on our own coasts, that although the conversion of sea into land by artificial labors may be great, yet it must always be in subordination to the power of the tides and currents, or to the great movements which alter the relative level of the land and sea, (Chap. XX.) If, in addition to the assistance obtained by parliamentary grants for defending Dunwich from the waves, all the resources of Europe had been directed to the same end, the existence of that port might perhaps have been prolonged for several centuries (p. 310.) But in the mean time, the current would have continued to sweep away portions from the adjoining cliffs on each side, giving to the whole line of coast its present form, until at length the town, projecting as a narrow promontory, must have become exposed to the irresistible fury of the waves.

It is scarcely necessary to observe, that the control which man can obtain over the igneous agents is less even than that which he may exert over the aqueous. He cannot modify the upheaving or depressing force of earthquakes, or the periods or degree of violence of volcanic eruptions; and on these causes the inequalities of the earth's surface, and, consequently, the shape of the sea and land, appear mainly to depend. The utmost that man can hope to effect in this respect is occasionally to divert the course of a lava-stream, and to prevent the burning matter, for a season, from overwhelming a city, or some other of the proudest works of human industry.

If all the nations of the earth should attempt to quarry away the lava which flowed during one eruption from the Icelandic volcanoes in 1783, and the two following years, and should attempt to consign it to the deepest abysses of the ocean, they might toil for thousands of years and not accomplish their task. Yet the matter borne down to the sea by two great rivers, the Ganges and Burrampooter, in each quarter of a century, probably equals in weight and volume the mass of Icelandic lava produced by that great eruption (p. 282). So insignificant is the aggregate force exerted by man, when contrasted with the ordinary operations of aqueous or igneous agents in the natural world.