At the mouth of a river in Nova Scotia, a schooner of thirty-two tons, laden with live stock, was lying with her side to the tide, when the bore, or tidal wave, which rises there about ten feet in perpendicular height, rushed into the estuary, and overturned the vessel, so that it instantly disappeared. After the tide had ebbed, the schooner was so totally buried in the sand, that the taffrel or upper rail over the stern was alone visible.[1088] We are informed by Leigh that, on draining Martin Meer, a lake eighteen miles in circumference, in Lancashire, a bed of marl was laid dry, wherein no fewer than eight canoes were found imbedded. In figure and dimensions they were not unlike those now used in America. In a morass about nine miles distant from this Meer a whetstone and an axe of mixed metal were dug up.[1089] In Ayrshire, also, three canoes were found in Loch Doon some few years ago; and during the year 1831 four others, each hewn out of separate oak trees. They were twenty-three feet in length, two and a half in depth, and nearly four feet in breadth at the stern. In the mud which filled one of them was found a war-club of oak and a stone battle-axe. A canoe of oak was also found in 1820, in peat overlying the shell-marl of the Loch of Kinnordy, in Forfarshire.[1090]

Manner in which ships may be preserved in a deep sea.—It is extremely possible that the submerged woodwork of ships which have sunk where the sea is two or three miles deep has undergone greater chemical changes in an equal space of time, than in the cases above mentioned; for the experiments of Scoresby show that wood may at certain depths be impregnated in a single hour with salt water, so that its specific gravity is entirely altered. It may often happen that hot springs, charged with carbonate of lime, silex, and other mineral ingredients, may issue at great depths, in which case every pore of the vegetable tissue may be injected with the lapidifying liquid, whether calcareous or siliceous, before the smallest decay commences. The conversion, also, of wood into lignite is probably more rapid under enormous pressure. But the change of the timber into lignite or coal would not prevent the original form of a ship from being distinguished; for as we find, in strata of the carboniferous era, the bark of the hollow reed-like trees converted into coal, and the central cavity filled with sandstone, so might we trace the outline of a ship in coal; while in the indurated mud, sandstone, or limestone, filling the interior, we might discover instruments of human art, ballast consisting of rocks foreign to the rest of the stratum, and other contents of the ship.

Submerged metallic substances.—Many of the metallic substances which fall into the waters probably lose, in the course of ages, the forms artificially imparted to them; but under certain circumstances these may be preserved for indefinite periods. The cannon enclosed in a calcareous rock, drawn up from the delta of the Rhone, which is now in the museum at Montpellier, might probably have endured as long as the calcareous matrix; but even if the metallic matter had been removed, and had entered into new combinations, still a mould of its original shape would have been left, corresponding to those impressions of shells which we see in rocks, from which all the carbonate of lime has been subtracted. About the year 1776, says Mr. King, some fishermen, sweeping for anchors in the Gulf stream (a part of the sea near the Downs), drew up a very curious old swivel gun, nearly eight feet in length. The barrel, which was about five feet long, was of brass; but the handle by which it was traversed was about three feet in length, and the swivel and pivot on which it turned were of iron. Around these latter were formed incrustations of sand converted into a kind of stone, of exceedingly strong texture and firmness; whereas round the barrel of the gun, except where it was near adjoining to the iron, there were no such incrustations, the greater part of it being clean, and in good condition, just as if it had still continued in use. In the incrusting stone, adhering to it on the outside, were a number of shells and corallines, "just as they are often found in a fossil state." These were all so strongly attached, that it required as much force to separate them from the matrix "as to break a fragment off any hard rock."[1091]

In the year 1745, continues the same writer, the Fox man-of-war was stranded on the coast of East Lothian, and went to pieces. About thirty-three years afterwards a violent storm laid bare a part of the wreck, and threw up near the place several masses, "consisting of iron, ropes, and balls," covered over with ochreous sand, concreted and hardened into a kind of stone. The substance of the rope was very little altered. The consolidated sand retained perfect impressions of parts of an iron ring, "just as impressions of extraneous fossil bodies are found in various kinds of strata."[1092]

After a storm in the year 1824, which occasioned a considerable shifting of the sands near St. Andrew's, in Scotland, a gun-barrel of ancient construction was found, which is conjectured to have belonged to one of the wrecked vessels of the Spanish Armada. It is now in the museum of the Antiquarian Society of Scotland, and is incrusted over by a thin coating of sand, the grains of which are cemented by brown ferruginous matter. Attached to this coating are fragments of various shells, as of the common cardium, mya, &c.

Many other examples are recorded of iron instruments taken up from the bed of the sea near the British coast, incased by a thick coating of conglomerate, consisting of pebbles and sand, cemented by oxide of iron.

Dr. Davy describes a bronze helmet, of the antique Grecian form, taken up in 1825, from a shallow part of the sea, between the citadel of Corfu and the village of Castrades. Both the interior and exterior of the helmet were partially incrusted with shells, and a deposit of carbonate of lime. The surface generally, both under the incrustation, and where freed from it, was of a variegated color, mottled with spots of green, dirty white, and red. On minute inspection with a lens, the green and red patches proved to consist of crystals of the red oxide and carbonate of copper, and the dirty white chiefly of oxide of tin.

The mineralizing process, says Dr. Davy, which has produced these new combinations, has, in general, penetrated very little into the substance of the helmet. The incrustation and rust removed, the metal is found bright beneath; in some places considerably corroded, in others very slightly. It proves, on analysis, to be copper, alloyed with 18.5 per cent. of tin. Its color is that of our common brass, and it possesses a considerable degree of flexibility.

"It is a curious question," he adds, "how the crystals were formed in the helmet, and on the adhering calcareous deposit. There being no reason to suppose deposition from solution, are we not under the necessity of inferring, that the mineralizing process depends on a small motion and separation of the particles of the original compound? This motion may have been due to the operation of electro-chemical powers which may have separated the different metals of the alloy.[1093]

Effects of the Subsidence of Land, in imbedding Cities and Forests in subaqueous Strata.