It appears, therefore, premature to assert that there are no recent coral formations uplifted to great heights, for we are only beginning to be acquainted with the geological structure of the rocks of equatorial regions. Some of the upraised islands, such as Elizabeth and Queen Charlotte, in the Pacific, although placed in regions of atolls, are described by Captain Beechey and others as flat-topped, and exhibiting no traces of lagoons. In explanation of the fact, we may presume that after they had been sinking for ages, the descending movement was relaxed; and while it was in the course of being converted into an ascending one, the ground remained for a long season almost stationary, in which case the corals within the lagoon would build up to the surface, and reach the level already attained by those on the margin of the reef. In this manner the lagoon would be effaced, and the island acquire a flat summit.

It may, however, be thought strange that many examples have not been noticed of fringing reefs uplifted above the level of the sea. Mr. Darwin, indeed, cites one instance where the reef preserved, on dry land in the Mauritius, its peculiar moat-like structure; but they ought, he says, to be of rare occurrence, for in the case of atolls or of barrier or fringing reefs, the characteristic outline must usually be destroyed by denudation as soon as a reef begins to rise; since it is immediately exposed to the action of the breakers, and the large and conspicuous corals on the outer rim of the atoll or barrier are the first to be destroyed and to fall to the bottom of vertical and undermined cliffs. After slow and continued upheaval a wreck alone can remain of the original reef. If, therefore, says Mr. Darwin, "at some period as far in futurity as the secondary rocks are in the past, the bed of the Pacific with its atolls and barrier reefs should be converted into a continent, we may conceive that scarcely any or none of the existing reefs would be preserved, but only widely spread strata of calcareous matter derived from their wear and tear."[1136]

When it is urged in support of the objection before stated (p. 767), that the theory of atolls by subsidence implies the accumulation of calcareous formations 2000 or 3000 feet thick, it must be conceded that this estimate of the minimum density of the deposits is by no means exaggerated. On the contrary, when we consider that the space over which atolls are scattered in Polynesia and the Indian oceans may be compared to the whole continent of Asia, we cannot but infer from analogy that the differences in level in so vast an area have amounted, antecedently to subsidence, to 5000 or even a greater number of feet. Whatever was the difference in height between the loftiest and lowest of the original mountains or mountainous islands on which the different atolls are based, that difference must represent the thickness of coral which has now reduced all of them to one level. Flinders, therefore, by no means exaggerated the volume of the limestone, which he conceived to have been the work of coral animals; he was merely mistaken as to the manner in which they were enabled to build reefs in an unfathomed ocean.

But is it reasonable to expect, after the waste caused by denudation, that calcareous masses, gradually upheaved in an open sea, should retain such vast thicknesses? Or may not the limestones of the cretaceous and oolitic epochs, which attain in the Alps and Pyrenees a density of 3000 or 4000 feet, and are in great part made up of coralline and shelly matter, present us with a true geological counterpart of the recent coral reefs of equatorial seas?

Before we attach serious importance to arguments founded on negative evidence, and opposed to a theory which so admirably explains a great variety of complicated phenomena, we ought to remember that the upheaval to the height of 4000 feet of atolls in which the coralline limestone would be 4000 feet thick, implies, first, a slow subsidence of 4000 feet, and, secondly, an elevation of the same amount. Even if the reverse or ascending movement began the instant the downward one ceased, we must allow a great lapse of ages for the accomplishment of the whole operation. We must also assume that at the commencement of the period in question, the equatorial regions were as fitted as now for the support of reef-building zoophytes. This postulate would demand the continuance of a complicated variety of conditions throughout a much longer period than they are usually persistent in one place.

To show the difficulty of speculating on the permanence of the geographical and climatal circumstances requisite for the growth of reef-building corals, we have only to state the fact that there are no reefs in the Atlantic, off the west coast of Africa, nor among the islands of the Gulf of Guinea, nor in St. Helena, Ascension, the Cape Verdes, or St. Paul's. With the exception of Bermuda, there is not a single coral reef in the central expanse of the Atlantic, although in some parts the waves, as at Ascension, are charged to excess with calcareous matter. This capricious distribution of coral reefs is probably owing to the absence of fit stations for the reef-building polypifers, other organic beings in those regions obtaining in the great struggle for existence a mastery over them. Their absence, in whatever manner it be accounted for, should put us on our guard against expecting upraised reefs at all former geological epochs, similar to those now in progress.

Lime, whence derived.—Dr. Maculloch, in his system of Geology, vol. i. p. 219, expressed himself in favor of the theory of some of the earlier geologists, that all limestones have originated in organized substances. If we examine, he says, the quantity of limestone in the primary strata, it will be found to bear a much smaller proportion to the siliceous and argillaceous rocks than in the secondary; and this may have some connexion with the rarity of testaceous animals in the ancient ocean. He farther infers, that in consequence of the operations of animals, "the quantity of calcareous earth deposited in the form of mud or stone is always increasing; and that as the secondary series far exceeds the primary in this respect, so a third series may hereafter arise from the depths of the sea, which may exceed the last in the proportion of its calcareous strata."

If these propositions went no farther than to suggest that every particle of lime that now enters into the crust of the globe, may possibly in its turn have been subservient to the purposes of life, by entering into the composition of organized bodies, I should not deem the speculation improbable; but, when it is hinted that lime may be an animal product combined by the powers of vitality from some simple elements, I can discover no sufficient grounds for such an hypothesis, and many facts militate against it.

If a large pond be made in almost any soil, and filled with rain water, it may usually become tenanted by testacea; for carbonate of lime is almost universally diffused in small quantities. But if no calcareous matter be supplied by waters flowing from the surrounding high grounds, or by springs, no tufa or shell-marl are formed. The thin shells of one generation of mollusks decompose, so that their elements afford nutriment to the succeeding races; and it is only where a stream enters a lake, which may introduce a fresh supply of calcareous matter, or where the lake is fed by springs, that shells accumulate and form marl.

All the lakes in Forfarshire which have produced deposits of shell-marl have been the sites of springs, which still evolve much carbonic acid, and a small quantity of carbonate of lime. But there is no marl in Loch Fithie, near Forfar, where there are no springs, although that lake is surrounded by these calcareous deposits, and although, in every other respect, the site is favorable to the accumulation of aquatic testacea.