So the orchideous plants which are parasitical on trees, and are generally characteristic of the tropics, advance to the 38th and 42d degree of S. lat., and even beyond the 45th degree in New Zealand, where they were found by Forster. In South America also arborescent grasses abound in the dense forests of Chiloe, in lat. 42° S., where "they entwine the trees into one entangled mass to the height of thirty or forty feet above the ground. Palm-trees in the same quarter of the globe grow in lat. 37°, an arborescent grass very like a bamboo in 40°, and another closely allied kind, of great length, but not erect, even as far south as 45°."[177]

It has long been supposed that the general temperature of the southern hemisphere was considerably lower than that of the northern, and that the difference amounted to at least 10° Fahrenheit. Baron Humboldt, after collecting and comparing a great number of observations, came to the conclusion that even a much larger difference existed, but that none was to be observed within the tropics, and only a small difference as far as the thirty-fifth and fortieth parallel. Captain Cook was of opinion that the ice of the antarctic predominated greatly over that of the arctic region, that encircling the southern pole coming nearer to the equator by 10° than the ice around the north pole. All the recent voyages of discovery have tended to confirm this opinion, although Capt. Weddel penetrated, in 1823, three degrees farther south than Capt. Cook, reaching lat. 74° 15' South, long. 34° 17' West, and Sir James Ross, in 1842, arrived at lat. 78° 10' S., as high a latitude, within three degrees, as the farthest point attained by Captain Parry in the arctic circle, or lat. 81° 12' North.

The description given by ancient as well as modern navigators of the sea and land in high southern latitudes, clearly attests the greater severity of the climate as compared to arctic regions. In Sandwich Land, in lat. 59° S., or in nearly the same parallel as the north of Scotland, Capt. Cook found the whole country, from the summits of the mountains down to the very brink of the sea-cliffs, "covered many fathoms thick with everlasting snow," and this on the 1st of February, the hottest time of the year; and what is still more astonishing, in the island of S. Georgia, which is in the 54° south latitude, or the same parallel as Yorkshire, the line of perpetual snow descends to the level of the ocean.[178] When we consider this fact, and then recollect that the highest mountains in Scotland, which ascend to an elevation of nearly 5000 feet, and are four degrees farther to the north, do not attain the limit of perpetual snow on our side of the equator, we learn that latitude is one only of many powerful causes, which determine the climate of particular regions of the globe. Capt. Sir James Ross, in his exploring expedition in 1841-3, found that the temperature south of the 60th degree of latitude seldom rose above 32° Fahr. During the two summer months of the year 1841 (January and February) the range of the thermometer was between 11° and 32° Fahr.; and scarcely once rose above the freezing point. The permanence of snow in the southern hemisphere, is in this instance partly due to the floating ice, which chills the atmosphere and condenses the vapor, so that in summer the sun cannot pierce through the foggy air. But besides the abundance of ice which covers the sea to the south of Georgia and Sandwich Land, we may also, as Humboldt suggests, ascribe the cold of those countries in part to the absence of land between them and the tropics.

If Africa and New Holland extended farther to the south, a diminution of ice would take place in consequence of the radiation of heat from these continents during summer, which would warm the contiguous sea and rarefy the air. The heated aerial currents would then ascend and flow more rapidly towards the south pole, and moderate the winter. In confirmation of these views, it is stated that the ice, which extends as far as the 68° and 71° of south latitude, advances more towards the equator whenever it meets an open sea; that is, where the extremities of the present continents are not opposite to it; and this circumstance seems explicable only on the principle above alluded to, of the radiation of heat from the lands so situated.

The cold of the antarctic regions was conjectured by Cook to be due to the existence of a large tract of land between the seventieth degree of south latitude and the pole. The justness of these and other speculations of that great navigator have since been singularly confirmed by the investigation made by Sir James Ross in 1841. He found Victoria Land, extending from 71° to 79° S. latitude, skirted by a great barrier of ice, the height of the land ranging from 4000 to 14,000 feet, the whole entirely covered with snow, except a narrow ring of black earth surrounding the huge crater of the active volcano of Mount Erebus, rising 12,400 feet above the level of the sea. The position of a mountainous territory of such altitude, so near the pole, and so obvious a source of intense cold, fully explains why Graham's and Enderby's Land, discovered by Captain Biscoe in 1831-2 (between lat. 64° and 68° S.), presented a most wintry aspect, covered even in summer with ice and snow, and nearly destitute of animal life. In corresponding latitudes of the northern hemisphere we not only meet with herds of wild herbivorous animals, but with land which man himself inhabits, and where he has even built ports and inland villages.[179]

The distance to which icebergs float from the polar regions on the opposite sides of the line is, as might have been anticipated, very different. Their extreme limit in the northern hemisphere is lat. 40°, as before mentioned, and they are occasionally seen in lat. 42° N., near the termination of the great bank of Newfoundland, and at the Azores, lat. 42° N., to which they are sometimes drifted from Baffin's Bay. But in the other hemisphere they have been seen, within the last few years, at different points off the Cape of Good Hope, between lat. 36° and 39°.[180] One of these (see [fig. 2].) was two miles in circumference, and 150 feet high, appearing like chalk when the sun was obscured, and having the lustre of refined sugar when the sun was shining on it. Others rose from 250 to 300 feet above the level of the sea, and were therefore of great volume below; since it is ascertained by experiments on the buoyancy of ice floating in sea-water, that for every cubic foot seen above, there must at least be eight cubic feet below water.[181] If ice islands from the north polar regions floated as far, they might reach Cape St. Vincent, and there, being drawn by the current that always sets in from the Atlantic through the Straits of Gibraltar, be drifted into the Mediterranean, so that the serene sky of that delightful region might soon be deformed by clouds and mists.

Fig. 2.

Iceberg seen off the Cape of Good Hope, April, 1829. Lat. 89º 18' S. Long. 48° 46' E.

Before the amount of difference between the temperature of the two hemispheres was ascertained, it was referred by many astronomers to the precession of the equinoxes, or the acceleration of the earth's motion in its perihelium; in consequence of which the spring and summer of the southern hemisphere are now shorter, by nearly eight days, than those seasons north of the equator. But Sir J. Herschel reminds us that the excess of eight days in the duration of the sun's presence in the northern hemisphere is not productive of an excess of annual light and heat; since, according to the laws of elliptic motion, it is demonstrable that whatever be the ellipticity of the earth's orbit, the two hemispheres must receive equal absolute quantities of light and heat per annum, the proximity of the sun in perigee exactly compensating the effect of its swifter motion.[182] Humboldt, however, observes, that there must be a greater loss of heat by radiation in the southern hemisphere during a winter longer by eight days than that on the other side of the equator.[183]