Position of land and sea which might produce the extreme of cold of which the earth's surface is susceptible.—To simplify our view of the various changes in climate, which different combinations of geographical circumstances may produce, we shall first consider the conditions necessary for bringing about the extreme of cold, or what would have been termed in the language of the old writers the winter of the "great year," or geological cycle, and afterwards, the conditions requisite to produce the maximum of heat, or the summer of the same year.
To begin with the northern hemisphere. Let us suppose those hills of the Italian peninsula and of Sicily, which are of comparatively modern origin, and contain many fossil shells identical with living species, to subside again into the sea, from which they have been raised, and that an extent of land of equal area and height (varying from one to three thousand feet) should rise up in the Arctic Ocean between Siberia and the north pole. In speaking of such changes, I shall not allude to the manner in which I conceive it possible that they may be brought about, nor of the time required for their accomplishment—reserving for a future occasion, not only the proofs that revolutions of equal magnitude have taken place, but that analogous operations are still in gradual progress. The alteration now supposed in the physical geography of the northern regions, would cause additional snow and ice to accumulate where now there is usually an open sea; and the temperature of the greater part of Europe would be somewhat lowered, so as to resemble more nearly that of corresponding latitudes of North America: or, in other words, it might be necessary to travel about 10° farther south in order to meet with the same climate which we now enjoy. No compensation would be derived from the disappearance of land in the Mediterranean countries; but the contrary, since the mean heat of the soil in those latitudes probably exceeds that which would belong to the sea, by which we imagine it to be replaced.
But let the configuration of the surface be still farther varied, and let some large district within or near the tropics, such as Brazil, with its plains and hills of moderate height, be converted into sea, while lands of equal elevation and extent rise up in the arctic circle. From this change there would, in the first place, result a sensible diminution of temperature near the tropic, for the Brazilian soil would no longer be heated by the sun; so that the atmosphere would be less warm, as also the neighboring Atlantic. On the other hand, the whole of Europe, Northern Asia, and North America, would be chilled by the enormous quantity of ice and snow, thus generated on the new arctic continent. If, as we have already seen, there are now some points in the southern hemisphere where snow is perpetual down to the level of the sea, in latitudes as low as central England, such might assuredly be the case throughout a great part of Europe, under the change of circumstances above supposed: and if at present the extreme range of drifted icebergs is the Azores, they might easily reach the equator after the assumed alteration. But to pursue the subject still farther, let the Himalaya mountains, with the whole of Hindostan, sink down, and their place be occupied by the Indian Ocean, while an equal extent of territory and mountains, of the same vast height, rise up between North Greenland and the Orkney Islands. It seems difficult to exaggerate the amount to which the climate of the northern hemisphere would then be cooled.[186]
But the refrigeration brought about at the same time in the southern hemisphere, would be nearly equal, and the difference of temperature between the arctic and equatorial latitudes would not be much greater than at present; for no important disturbance can occur in the climate of a particular region without its immediately affecting all other latitudes, however remote. The heat and cold which surround the globe are in a state of constant and universal flux and reflux. The heated and rarefied air is always rising and flowing from the equator towards the poles in the higher regions of the atmosphere; while in the lower, the colder air is flowing back to restore the equilibrium. That this circulation is constantly going on in the aerial currents is not disputed; it is often proved by the opposite course of the clouds at different heights, and the fact has been farther illustrated in a striking manner by two recent events. The trade wind continually blows with great force from the island of Barbadoes to that of St. Vincent; notwithstanding which, during the eruption of the volcano in the island of St. Vincent, in 1812, ashes fell in profusion from a great height in the atmosphere upon Barbadoes.[187] In like manner, during the great eruption of Sumbawa, in 1815, ashes were carried to the islands of Amboyna and Banda, which last is about 800 miles east from the site of the volcano. Yet the southeast monsoon was then at its height.[188] This apparent transposition of matter against the wind, confirmed the opinion of the existence of a counter-current in the higher regions, which had previously rested on theoretical conclusions only.
That a corresponding interchange takes place in the seas, is demonstrated, according to Humboldt, by the cold which is found to exist at great depths within the tropics; and, among other proofs, may be mentioned the mass of warmer water which the Gulf stream is constantly bearing northwards, while a cooler current flows from the north along the coast of Greenland and Labrador, and helps to restore the equilibrium.[189]
Currents of colder and therefore specifically heavier water pass from the poles towards the equator, which cool the inferior parts of the ocean; so that the heat of the torrid zone and the cold of the polar circle balance each other. The refrigeration, therefore, of the polar regions, resulting from the supposed alteration in the distribution of land and sea, would be immediately communicated to the tropics, and from them its influence would extend to the antarctic circle, where the atmosphere and the ocean would be cooled, so that ice and snow would augment. Although the mean temperature of higher latitudes in the southern hemisphere is, as before stated, for the most part, lower than that of the same parallels in the northern, yet, for a considerable space on each side of the line, the mean annual heat of the waters is found to be the same in corresponding parallels. If, therefore, by the new position of the land, the formation of icebergs had become of common occurrence in the northern temperate zone, and if these were frequently drifted as far as the equator, the same degree of cold which they generated would immediately be communicated as far as the tropic of Capricorn, and from thence to the lands or ocean to the south.
The freedom, then, of the circulation of heat and cold from pole to pole being duly considered, it will be evident that the mean temperature which may prevail at the same point at two distinct periods, may differ far more widely than that of any two points in the same parallels of latitude, at one and the same period. For the range of temperature, or in other words, the curvature of the isothermal lines in a given zone, and at a given period, must always be circumscribed within narrow limits, the climate of each place in that zone being controlled by the combined influence of the geographical peculiarities of all other parts of the earth. Whereas, if we compare the state of things at two distinct and somewhat distant epochs, a particular zone may at one time be under the influence of one class of disturbing causes, and at another time may be affected by an opposite combination. The lands, for example, to the north of Greenland cause the present climate of North America to be colder than that of Europe in the same latitudes; but the excess of cold is not so great as it would have been if the western hemisphere had been entirely isolated, or separated from the eastern like a distinct planet. For not only does the refrigeration produced by Greenland chill to a certain extent the atmosphere of northern and western Europe, but the mild climate of Europe reacts also upon North America, and moderates the chilling influence of the adjoining polar lands.
To return to the state of the earth after the changes above supposed, we must not omit to dwell on the important effects to which a wide expanse of perpetual snow would give rise. It is probable that nearly the whole sea, from the poles to the parallels of 45°, would be frozen over; for it is well known that the immediate proximity of land is not essential to the formation and increase of field ice, provided there be in some part of the same zone a sufficient quantity of glaciers generated on or near the land, to cool down the sea. Captain Scoresby, in his account of the arctic regions, observes, that when the sun's rays "fall upon the snow-clad surface of the ice or land, they are in a great measure reflected, without producing any material elevation of temperature; but when they impinge on the black exterior of a ship, the pitch on one side occasionally becomes fluid while ice is rapidly generated at the other."[190]
Now field ice is almost always covered with snow;[191] and thus not only land as extensive as our existing continents, but immense tracts of sea in the frigid and temperate zones, might present a solid surface covered with snow, and reflecting the sun's rays for the greater part of the year. Within the tropics, moreover, where the ocean now predominates, the sky would no longer be serene and clear, as in the present era; but masses of floating ice would cause quick condensations of vapor, so that fogs and clouds would deprive the vertical rays of the sun of half their power. The whole planet, therefore, would receive annually a smaller portion of the solar influence, and the external crust would part, by radiation, with some of the heat which had been accumulated in it, during a different state of the surface. This heat would be dissipated in the spaces surrounding our atmosphere, which, according to the calculations of M. Fourier, have a temperature much inferior to that of freezing water.
After the geographical revolution above assumed, the climate of equinoctial lands might be brought at last to resemble that of the present temperate zone, or perhaps be far more wintry. They who should then inhabit such small isles and coral reefs as are now seen in the Indian Ocean and South Pacific, would wonder that zoophytes of large dimensions had once been so prolific in their seas; or if, perchance, they found the wood and fruit of the cocoa-nut tree or the palm silicified by the waters of some ancient mineral spring, or incrusted with calcareous matter, they would muse on the revolutions which had annihilated such genera, and replaced them by the oak, the chestnut, and the pine. With equal admiration would they compare the skeletons of their small lizards with the bones of fossil alligators and crocodiles more than twenty feet in length, which, at a former epoch, had multiplied between the tropics: and when they saw a pine included in an iceberg, drifted from latitudes which we now call temperate, they would be astonished at the proof thus afforded, that forests had once grown where nothing could be seen in their own times but a wilderness of snow.