Concluding remarks on changes in physical geography.—The foregoing observations, it may be said, are confined chiefly to Europe, and therefore merely establish the increase of dry land in a space which constitutes but a small portion of the northern hemisphere; but it was stated in the preceding chapter, that the great Lowland of Siberia, lying chiefly between the latitudes 55° and 75° N. (an area nearly equal to all Europe), is covered for the most part by marine strata, which, from the account given by Pallas, and more recently by Sir R. Murchison, belongs to a period when all or nearly all the shells were of a species still living in the north. The emergence, therefore, of this area from the deep is, comparatively speaking, a very modern event, and must, as before remarked, have caused a great increase of cold throughout the globe.

Upon a review, then, of all the facts above enumerated, respecting the ancient geography of the globe as attested by geological monuments, there appear good grounds for inferring that changes of climate coincided with remarkable revolutions in the former position of sea and land. A wide expanse of ocean, interspersed with islands, seems to have pervaded the northern hemisphere at the periods when the Silurian and carboniferous rocks were formed, and a warm and very uniform temperature then prevailed. Subsequent modifications in climate accompanied the deposition of the secondary formations, when repeated changes were effected in the physical geography of our northern latitudes. Lastly, the refrigeration became most decided, and the climate most nearly assimilated to that now enjoyed, when the lands in Europe and northern Asia had attained their full extension, and the mountain chains their actual height.

Soon after the first publication of this theory of climate, an objection was made by an anonymous German critic in 1833 that there are no geological proofs of the prevalence at any former period of a temperature lower than that now enjoyed; whereas, if the causes above assigned were the true ones, it might reasonably have been expected that fossil remains would sometimes indicate colder as well as hotter climates than those now established.[202] In answer to this objection, I may suggest, that our present climates are probably far more distant from the extreme of possible heat than from its opposite extreme of cold. A glance at the map ([fig. 6], p. 111) will show that all the existing lands might be placed between the 30th parallels of latitude on each side of the equator, and that even then they would by no means fill that space. In no other position would they give rise to so high a temperature. But the present geographical condition of the earth is so far removed from such a state of things, that the land lying between the poles and the parallels of 30, is in great excess; so much so that, instead of being to the sea in the proportion of 1 to 3, which is as near as possible the average general ratio throughout the globe, it is 9 to 23.[203] Hence it ought not to surprise us if, in our geological retrospect, embracing perhaps a small part only of a complete cycle of change in the terrestrial climates, we should happen to discover everywhere the signs of a higher temperature. The strata hitherto examined may have originated when the quantity of equatorial land was always decreasing and the land in regions nearer the poles augmenting in height and area, until at length it attained its present excess in high latitudes. There is nothing improbable in supposing that the geographical revolutions of which we have hitherto obtained proofs had this general tendency; and in that case the refrigeration must have been constant, although, for reasons before explained, the rate of cooling may not have been uniform.

It may, however, be as well to recall the reader's attention to what was before said of the indication brought to light of late years, of a considerable oscillation of temperature, in the period immediately preceding the human era. We have seen that on examining some of the most northern deposits, those commonly called the northern drift in Scotland, Ireland, and Canada, in which nearly all, in some cases, perhaps all, the fossil shells are of recent species, we discover the signs of a climate colder than that now prevailing in corresponding latitudes on both sides the Atlantic. It appears that an arctic fauna specifically resembling that of the present seas, extended farther to the south than now. This opinion is derived partly from the known habitations of the corresponding living species, and partly from the abundance of certain genera of shells and the absence of others.[204] The date of the refrigeration thus inferred appears to coincide very nearly with the era of the dispersion of erratic blocks over Europe and North America, a phenomenon which will be ascribed in the sequel (ch. 16) to the cold then prevailing in the northern hemisphere. The force, moreover, of the German critic's objection has been since in a great measure destroyed, by the larger and more profound knowledge acquired in the last few years of the ancient carboniferous flora, which has led the ablest botanists to adopt the opinion, that the climate of the coal period was remarkable for its warmth, moisture, equability, and freedom from cold, rather than the intensity of its tropical heat. We are therefore no longer entitled to assume that there has been a constant and gradual decline in the absolute amount of heat formerly contained in the atmosphere and waters of the ocean, such as it was conjectured might have emanated from the incandescent central nucleus of a new and nearly fluid planet, before the interior had lost, by radiation into surrounding space, a great part of its original high temperature.

Astronomical causes of fluctuations in climate.—Sir John Herschel has lately inquired, whether there are any astronomical causes which may offer a possible explanation of the difference between the actual climate of the earth's surface, and those which formerly appear to have prevailed. He has entered upon this subject, he says, "impressed with the magnificence of that view of geological revolutions, which regards them rather as regular and necessary effects of great and general causes, than as resulting from a series of convulsions and catastrophes, regulated by no laws, and reducible to no fixed principles." Geometers, he adds, have demonstrated the absolute invariability of the mean distance of the earth from the sun; whence it would at first seem to follow, that the mean annual supply of light and heat derived from that luminary would be alike invariable: but a closer consideration of the subject will show, that this would not be a legitimate conclusion; but that on the contrary, the mean amount of solar radiation is dependent on the eccentricity of the earth's orbit, and therefore liable to variation.[205]

Now the eccentricity of the orbit, he continues, is actually diminishing, and has been so for ages beyond the records of history. In consequence, the ellipse is in a state of approach to a circle, and the annual average of solar heat radiated to the earth is actually on the decrease. So far this is in accordance with geological evidence, which indicates a general refrigeration of climate; but the question remains, whether the amount of diminution which the eccentricity may have ever undergone can be supposed sufficient to account for any sensible refrigeration. The calculations necessary to determine this point, though practicable, have never yet been made, and would be extremely laborious; for they must embrace all the perturbations which the most influential planets, Venus, Mars, Jupiter, and Saturn, would cause in the earth's orbit, and in each other's movements round the sun.

The problem is also very complicated, inasmuch as it depends not merely on the ellipticity of the earth's orbit, but on the assumed temperature of the celestial spaces beyond the earth's atmosphere; a matter still open to discussion, and on which M. Fourier and Sir J. Herschel have arrived at very different opinions. But if, says Herschel, we suppose an extreme case, as if the earth's orbit should ever become as eccentric as that of the planet Juno or Pallas, a great change of climate might be conceived to result, the winter and summer temperatures being sometimes mitigated, and at others exaggerated, in the same latitudes.

It is much to be desired that the calculations alluded to were executed, as even if they should demonstrate, as M. Arago thinks highly probable,[206] that the mean amount of solar radiation can never be materially affected by irregularities in the earth's motion, it would still be satisfactory to ascertain the point. Such inquiries, however, can never supersede the necessity of investigating the consequences of the varying position of continents, shifted as we know them to have been during successive epochs, from one part of the globe to the other.

Another astronomical hypothesis respecting the possible cause of secular variations in climate, has been proposed by a distinguished mathematician and philosopher, M. Poisson. He begins by assuming, 1st, that the sun and our planetary system are not stationary, but carried onward by a common movement through space; 2dly, that every point in space receives heat as well as light from innumerable stars surrounding it on all sides, so that if a right line of indefinite length be produced in any direction from such a point, it must encounter a star either visible or invisible to us. 3dly, He then goes on to assume, that the different regions of space, which in the course of millions of years are traversed by our system, must be of very unequal temperature, inasmuch as some of them must receive a greater, others a less, quantity of radiant heat from the great stellary inclosure. If the earth, he continues, or any other large body, pass from a hotter to a colder region, it would not readily lose in the second all the heat which it has imbibed in the first region, but retain a temperature increasing downwards from the surface, as in the actual condition of our planet.[207]

Now the opinion originally suggested by Sir W. Herschel, that our sun and its attendant planets were all moving onward through space, in the direction of the constellation Hercules, is very generally thought by eminent astronomers to be confirmed. But even if its reality be no longer matter of doubt, conjectures as to its amount are still vague and uncertain; and great, indeed, must be the extent of the movement before this cause alone can work any material alteration in the terrestrial climates. Mr. Hopkins, when treating of this theory, remarked, that so far as we were acquainted with the position of the stars not very remote from the sun, they seem to be so distant from each other, that there are no points in space among them, where the intensity of radiating heat would be comparable to that which the earth derives from the sun, except at points very near to each star. Thus, in order that the earth should derive a degree of heat from stellar radiation comparable to that now derived from the sun, she must be in close proximity to some particular star, leaving the aggregate effect of radiation from the other stars nearly the same as at present. This approximation, however, to a single star could not take place consistently with the preservation of the motion of the earth about the sun, according to its present laws.