Scarcely any two botanists, for example, can agree as to the number of roses, still less as to how many species of bramble we possess. Of the latter genus, Rubus, there is one set of forms respecting which it is still a question whether it ought to be regarded as constituting three species or thirty-seven. Mr. Bentham adopts the first alternative and Mr. Babington the second, in their well-known treatises on British plants.

We learn from Dr. Hooker that at the antipodes, both in New Zealand and Australia, this same genus Rubus is represented by several species rich in individuals and remarkable for their variability. When we consider how, as we extend our knowledge of the same plant over a wider area, new geographical varieties commonly present themselves, and then endeavour to imagine the number of forms of the genus Rubus which may now exist, or probably have existed, in Europe and in regions intervening between Europe and Australia, comprehending all which may have flourished in Tertiary and Post-Tertiary periods, we shall perceive how little stress should be laid on arguments founded on the assumed absence of missing links in the flora as it now exists.

If in the battle of life the competition is keenest between closely allied varieties and species, as Mr. Darwin contends, many forms can never be of long duration, nor have a wide range, and these must often pass away without leaving behind them any fossil memorials. In this manner we may account for many breaks in the series which no future researches will ever fill up.

DAVIDSON ON FOSSIL BRACHIOPODA.

It is from fossil conchology more than from any other department of the organic world that we may hope to derive traces of a transition from certain types to others, and fossil memorials of all the intermediate shades of form. We may especially hope to gain this information from the study of some of the lower groups, such as the Brachiopoda, which are persistent in type, so that the thread of our inquiry is less likely to be interrupted by breaks in the sequence of the fossiliferous rocks. The splendid monograph just concluded by Mr. Davidson on the British Brachiopoda, illustrates, in the first place, the tendency of certain generic forms in this division of the mollusca to be persistent throughout the whole range of geological time yet known to us; for the four genera, Rhynchonella, Crania, Discina, and Lingula, have been traced through the Silurian, Devonian, Carboniferous, Permian, Jurassic, Cretaceous, Tertiary, and Recent periods, and still retain in the existing seas the identical shape and character which they exhibited in the earliest formations. On the other hand, other Brachiopoda have gone through in shorter periods a vast series of transformations, so that distinct specific and even generic names have been given to the same varying form, according to the different aspects and characters it has put on in successive sets of strata.

In proportion as materials of comparison have accumulated, the necessity of uniting species previously regarded as distinct under one denomination has become more and more apparent. Mr. Davidson, accordingly, after studying not less than 260 reputed species from the British Carboniferous rocks, has been obliged to reduce that number to 100, to which he has added 20 species either entirely new or new to the British strata; but he declares his conviction that, when our knowledge of these 120 Brachiopoda is more complete, a further reduction of species will take place.

Speaking of one of these forms, which he calls Spirifer trigonalis, he says that it is so dissimilar to another extreme of the series, S. crassa, that in the first part of his memoir (published some ten years ago) he described them as distinct, and the idea of confounding them together must, he admits, appear absurd to those who have never seen the intermediate links, such as are presented by S. bisulcata, and at least four others with their varieties, most of them shells formerly recognised as distinct by the most eminent palaeontologists, but respecting which these same authorities now agree with Mr. Davidson in uniting them into one species.*

(* "Monograph on British Brachiopoda" Palaeontographical
Society page 222.)

The same species has sometimes continued to exist under slightly modified forms throughout the whole of the Ordovician and Silurian as well as the entire Devonian and Carboniferous periods, as in the case of the shell generally known as Leptaena rhomboidalis, Wahlenberg. No less than fifteen commonly received species are demonstrated by Mr. Davidson by the aid of a long series of transitional forms, to appertain to this one type; and it is acknowledged by some of the best writers that they were induced on purely theoretical grounds to give distinct names to some of the varieties now suppressed, merely because they found them in rocks so widely remote in time that they deemed it contrary to analogy to suppose that the same species could have endured so long: a fallacious mode of reasoning, analogous to that which leads some zoologists and botanists to distinguish by specific names slight varieties of living plants and animals met with in very remote countries, as in Europe and Australia, for example; it being assumed that each species has had a single birthplace or area of creation, and that they could not by migration have gone from the northern to the southern hemisphere across the intervening tropics.

Examples are also given by Mr. Davidson of species which pass from the Devonian into the Carboniferous, and from that again into the Permian rocks. The vast longevity of such specific forms has not been generally recognised in consequence of the change of names which they have undergone when derived from such distant formations, as when Atrypa unguicularis assumes, when derived from a Carboniferous rock, the name of Spirifer Urei, besides several other synonyms, and then, when it reaches the Permian period, takes the name of Spirifer Clannyana, King; all of which forms the author of the monograph, now under consideration, asserts to be one and the same.