Several of the railways now constituting portions of the Midland Railway Company obtained their acts of incorporation in 1836. These lines, when amalgamated in 1844, comprised 181 miles. On the 1st of September, 1867, the mileage of the Midland Company was 695; and since the 1st of that month the important section between London and Bedford (forty-two miles long) was opened for goods traffic, thus making its present total working length, 737 miles.
By degrees, and notwithstanding the severe blow given to railway enterprise by the over-speculation of 1844-5, the net-work of British railways increased. On the 1st of January, 1843, there were 1,857 miles open for traffic; at the same date of 1849 they had increased to 5,007 miles; on the 1st of January, 1855, they were 8,054 miles; eight years afterwards, that is, on the 1st of January, 1863, they were 11,551; that day twelve months they were 12,322; on the 1st of January, 1865, they were 12,780; 1st January, 1866, 13,289; 1st of January, 1867, 13,882.[1]
We shall refer to the progress of the railway system on the continent of Europe and elsewhere hereafter.
Part of the heavy cost of the earlier railways was no doubt due to the apprehension of engineers on the subject of gradients. And in the then state of our knowledge as regards the powers of the locomotive, this is not to be wondered at. Our first constructed lines had most favourable gradients. The rise from Camden Town to Tring, 1 in 200, or 26 feet in the mile for 31 miles, was considered by the late Mr. Robert Stephenson as the maximum gradient that ought to be ventured upon. Joseph Locke, more daring and venturous, and perhaps more prescient, ventured upon 1 in 100, or 52 feet in the mile for 10 miles; this is on what is known as the Whitmore incline, between Stafford and Crewe. Bucke, the engineer of the line from Crewe to Manchester, originally known as the Manchester and Birmingham, which obtained its act of incorporation in the same year as the Grand Junction, although it was five years later in its opening, determined upon a course the opposite of that which Locke had taken. Bucke therefore made his thirty-one miles nearly level, and no doubt (if we except the exceptional Great Western) there is not a line in England that comprises works better laid out as regards gradient, or more solidly finished than those we are now referring to.
There is a capital run of railway between York and Darlington, forty-four miles, almost level, and nearly straight. It was on this line that, just twenty years ago, most of the experiments and trials were made, instituted to vindicate the narrow gauge as the best for carrying on the traffic of the country. These trials formed one of the many phases of the great battle of the gauges, fought so vigorously by its champions on each side; yet, in the short space of the fifth of a century, how many of these then active and doughty men have passed away from us for ever.
By degrees, as the railway system progressed, we made less flat gradients, and we made larger and more powerful locomotives. The result from the action of these two elements has been, that in present times we have got here and there to gradients of 1 in 45, 112 feet in the mile, more than four times as steep as Stephenson’s incline between Tring and Camden. It was on the 6th of October, 1829, that George Stephenson’s engine, “Rocket,” was first tried on a short length of the Liverpool and Manchester Railway, in the presence of thousands, poured in from the adjacent country. Since then the weight of the engine has risen tenfold, from six tons to sixty; its speed not quite three-fold, from twenty miles an hour to something under sixty. Additional weight has been essentially used for overcoming stiff gradients. The stiffest, as has just been said, 1 in 45, with a moderate load; a Titanic locomotive, unfettered with any weights behind her, can go up 1 in 25, or 211 feet in the mile; no steeper.[2]
But this rate of inclination, of 1 in 45, acquired on some few elevated ridges, as will be seen presently, at an enormous cost, was incapable of general application. Nevertheless, railways had hardly been established on low lands before men’s minds ran upon constructing them over mountains. It is now fully twenty years since the first idea of placing an iron road upon the bed of one or more of the carriage roadway passes of the Alps was promulgated. Of course it found favour, and created interest. Nor can this be matter of wonder when we remember that communication across them has, for centuries, been of world-wide importance. Even if we study the traces that still exist of man’s earliest history in mid and southern Europe, we find that the passage of the great barrier which for more than 500 miles separates north from south, had occupied men’s thoughts and actions from the remotest period. Etruscan tools, coins, and sacred images, have, as we learn from Dr. Ferdinand Keller’s recent work on the Lake Dwellings of Switzerland, been found frequently and in abundance, not only on the northern slopes of the actual Alps, but far northward beyond them. We know too, that the ancient Helvites and Gauls were ever seeking the traverse of the snow-capped mountains, that they might exchange their own cold and sterile plains for those on the sunny side, which gave them warmth and luxurious cultivation. By degrees, the early few, savage, daring, and intrepid, increased in numbers; they became masses,—they became colonies. They obtained possession of, and held the districts which in modern times we knew as Venetia, Lombardy, and Savoy; but now they form the northern boundaries of undivided Italy.
In the early Roman period, the northern limit of Roman territory extended to the Po, and no farther. Beyond was Cisalpeà, and so it continued until Augustus Cæsar Imperator finally subdued, some thirty years before the birth of Christ, the whole of the warlike tribes, and brought them under Roman subjection. History records but one solitary instance of the vanquished erecting a monument to do honour to their conqueror. This was at Susa, and the inscription on the Porta Cæsaris Augusti tells us why it was erected, and what deed it was intended to perpetuate.
Hannibal’s was the first army that made a passage across the Alps, but the exact part at which he effected it is still matter of historic doubt. The balance of worthful opinion is however strongly in favour of its being by what we now call the Pass of the Little St. Bernard. The army would appear not to have been subjected to great difficulties in reaching its summit, notwithstanding that the 19th of October is believed to be the day on which the ascent was commenced, but the horrors to which his hourly thinned ranks were exposed, all occurred after they had attained the summit, and were within sight of the plains in which the autumnal foliage still spread a rich and glowing landscape before them. That some few of the army of ninety elephants with which Hannibal started from Spain completed the Alpine traverse is more than probable, but that one accomplished it is undoubted, for we have it on record that the Carthaginian General crossed the marshes of Clusium (which will be traversed by the railway train of the new and comparatively shorter line between Florence and Rome, to be opened for traffic a few months hence) upon the only elephant that was still spared to him.
Brockedon, whose illustrated work on Alpine Passes was published in 1828, states that there were ten passes traversable as carriage roads. The actual number has not been added to since then, but the trackway along many of the other passes has been greatly improved, and many, that at that period were only dangerous and very narrow mule paths, have now become available for chars, and possess other facilities and accommodation for traversing them that were quite unknown forty years ago. A very brief recapitulation of them may not be inappropriate. More full details of them can be obtained in The Alps and the Eastern Mails, a little work which we published a few months ago.