The interesting thing about the colour of the little tree-frogs is that we find, on careful examination of the skin of a dead specimen with the microscope, that there is no green nor yet any blue “pigment” present in it. I found, on examining the blue specimen which died after living three years with me, that there is only black pigment overlaid by a colourless, semi-transparent layer of skin. In this outer skin in the ordinary green specimens there is scattered a quantity of excessively minute yellow particles, which, mixed with the blue, produce the green appearance. The fact is, that the wonderful “dead” turquoise-blue of the blue frog is a colour-effect similar to that of the blue sky and the blue of the human eye. It is produced by a peculiar reflection of the light from minute colourless particles, without the assistance of any blue-coloured substance. The distinction of these two modes of producing blue colour is important.
Certain transparent bodies are so constituted that when a beam of light is directed so as to pass through them, the red, yellow, green, and purple rays which exist in colourless sunlight are stopped, and only the blue rays come through. Such a body is blue copperas, or sulphate of copper; another is methyl blue, one of the aniline dyes; another is pure water, which gives only a slight advantage to the blue rays, so that the light must pass through a thickness of 30 feet or more before the blue tint is obvious. Thus, part of the blueness of the Côte d’Azur is accounted for—namely, the blueness of the sea when the sunlight is strong and is reflected from the white rocks and sand lying 30 feet to 100 feet below the surface of the water.
There are, of course, other self-coloured transparent bodies which allow only rays of one colour to pass. Thus, blood-red, or hæmoglobin, the pigment of the blood, allows chiefly red rays to pass through it. Yellow rays only pass through a solution of saffron or of chromic acid; green only or chiefly through green copperas (sulphate of iron) or through leaf-green or chlorophyll. Colour is very generally due in natural objects to such transparent bodies which absorb or stop all the coloured rays of light as it passes through them, excepting those of one tint—or, to be more correct, nearly all except those of one tint.
But the blue of the blue frog and a great deal of the blue in nature is due to another cause. If you are a smoker, or the friend of a smoker, watch the fine curling lines of smoke ascending from a cigar when it is being consumed in bright sunshine. You will see that it has a blue, even an azure blue, tint as the sunlight falls upon it. But if you let the smoke get between the sun and your eyes you will notice that the little curling clouds are no longer blue, but reddish-brown, in appearance. The smoke is not a transparent blue; looked at as a transparent body, it is brown! Further, when the smoke has passed into the smoker’s mouth and is ejected after remaining there for a few seconds, the cloud no longer looks blue, even when the sunlight falls on it and is reflected from it to your eye. It is now opaque white or colourless, with, perhaps, a faint tinge of blue. This change is due—as was shown by the experiments of the late Professor Tyndall upon a variety of clouds and vapours—to the cooling of the smoke and the increased size of the floating particles which coalesce as the temperature falls. The larger particles reflect white light, and the cloud is no longer blue. A cloud formed by the finest particles gives the strongest blue to the light reflected from it, and it is to this property of the finest particles of water-cloud floating in our atmosphere that the blue colour of the sky is due.
No doubt the question arises, “Why do clouds of the finest particles reflect a predominant amount of blue light rather than yellow or green or red?” That question is answered by mathematicians in accordance with what is ascertained as to the nature and properties of light, but it would require a long treatise to put those matters even in outline before the reader. We may in the meanwhile accept the conclusions of the physicists, and interest ourselves in seeing how they apply to some of the concrete facts about colour in Nature.
There are other instances of “blueness” due to the reflection of light from a cloud of excessively minute particles besides that of the azure sky and the blue, curling smoke of a wood fire. A familiar instance is the blueness of translucent bodies, such as the “white” of a boiled plover’s egg, especially when a bit of it is placed on a dead-black ground. The bluish appearance of watered London milk is another instance. These bodies look blue owing to the fine, colourless particles suspended in them, which act on light in the same way as do the fine particles of newly-produced smoke. Another very interesting case is the blue colour of the iris of the eye of man and other animals. It is not due to any blue pigment, but to a reflection from fine particles in the translucent, but turbid, tissue of the iris overlying the dark, black chamber of the eye. White geese and white cats frequently have blue eyes, the blue being thus produced. The only pigment which occurs in the human eye is a brown one, which gives a colour varying from amber yellow to very dark brown, almost black, according to the quantity present. When a very little of it is present it gives, in combination with the blue appearance of the unpigmented iris, a green tint, so that green eyes owe their colour to the same combination of causes as does the green skin of the little tree-frogs, or “rainettes.”
No solvent will extract any pigment from the skin of the blue frog—nor by the finest trituration can one obtain any coloured particles from it; only fine black granules can be separated. Alcohol removes the yellow pigment from the skin of a green tree-frog (killed, of course, for the experiment), and for a minute or two the skin becomes blue when its yellow pigment is thus removed by immersion in spirit; but it rapidly becomes a dull greyish-brown in colour, and so remains; the green cannot be preserved in spirit-specimens. It is not fully explained how such a uniform “dead” blue is produced by the reflection of light from fine particles, as that observed in the blue frog’s skin.
It appears that the blue and the green colour in the feathers of birds is in most, if not all, cases produced in the same way as the blue and green of the tree-frog’s skin. It would be interesting were it found possible to produce a full dead-blue colour by experimentally placing a coat of a translucent but turbid colourless medium on a dead-black plate. This, however, has not been done as a deliberate experiment. It is, however, recorded that Goethe was delighted to find what he considered to be a confirmation of his theory of colour when a friend showed him an oil-painting of a gentleman in a black coat which when wetted with a sponge turned bright blue. The picture had been recently “restored,” and the varnish on the black coat was not “dry.” It was precipitated by the water from the sponge, mixing with the spirit which held it in solution. A fine colourless cloud was thus produced overlying the black paint of the coat, and, as in the case of the cerulean frog, a dead-blue colour, due to reflection of the light by the fine particles, was the result. Some friendly physicist might repeat this experiment and study the matter in detail. The red, orange, and yellow colours of birds’ feathers are produced by pigments which are either insoluble or only soluble with great difficulty in fluids of the nature of ether. There is, however, an exception in the case of the African birds called Turacous, or Plantain-eaters. These birds have some large quill-feathers in the wing of a rich crimson colour. This splendid red pigment can be washed out of the feathers by water which is slightly alkaline, and a fine blood-red solution is obtained. Why this curious exception exists we do not know. The extracted colour is found to contain the element copper as one of its chemical components. Plantain-eaters kept in cages have sometimes washed all the colour out of their feathers owing to the water supplied to them for bathing and drinking having become foul and ammoniacal, and thus capable of dissolving the red pigment.
The cultivation on the Riviera of flowers for sale as “cut flowers” in Paris, London, and Berlin, in the colder months of the year, is now an enormous business, bringing many thousands of pounds yearly to the small gardeners around Hyères, St. Raphael, Nice, and Mentone. Roses, violets, carnations, “mimosa” of various kinds, anemones, lilies, and narcissus are sent literally in tons by quick trains several times a week from these realms of sunshine to the dreary North. The commencement of this trade was due to the suggestion made some fifty years ago by Alphonse Karr, the French poet and journalist, who had a beautiful garden of his own at St. Raphael, and found that he could produce flowers in profusion through the winter. Two years ago I visited this garden (which now belongs to a French painter) at the beginning of April, and found it full of interesting flowers and shrubs, enormous bamboos, palm trees, some twenty different “mimosas,” eucalyptus of several species, camellia trees, and rose-bushes in quantity.
The influence of man on the vegetation of a favoured locality like the Riviera is more striking than in the North. But it is worth remembering that the most familiar tree in England—the common elm—is not a native, but introduced from South Europe. Our native elm is the wych-elm, or mountain elm—a much handsomer tree, in the opinion of many, than the so-called “common elm.” There are doubts as to whether both the spruce and the larch were not introduced by man at a very remote time, so that the Scotch fir would be our only aboriginal pine. The oak, beech, birch, ash, hawthorn, poplar, and alder are undoubted native English trees. The holly-oak or evergreen oak, the sycamore, plane-tree, sweet chestnut, horse chestnut, walnut, and probably the lime or linden tree have been introduced by migrating men at various periods into our islands. With the exception of rye and oats none of the plants which we cultivate for food are derived from our own wild plants, and none of our domesticated animals have been produced from native wild kinds.