The above brief history applies to the North Sea or Channel oyster, which is also found (with other species) in the Mediterranean. The American and the Portuguese oyster differ from it in being of distinct sexes, and in the fact that the eggs are discharged into the sea by the females, and are there fertilised by the sperm discharged by the male oysters, instead of in the parent’s body.

Other “molluscs,” such as snails and whelks, enclose their fertilised eggs, when they lay them, in egg-shells. Some snails enclose a single egg in a shell which is filled up with clear liquid—corresponding to the “white” of a bird’s egg—in which the egg floats and develops. The eggs of the common snail are not bigger than a hemp-seed, but some Indian snails lay eggs as big as those of a robin, with a hard, calcareous shell, and the young snail has quite a large coiled shell of its own before it escapes from the egg-shell. So that it looks, when one of the big snail’s eggs is broken, as though a snail had managed to get inside a bird’s egg without making a hole in it! The whelks and their kind lay many eggs in one shell or capsule, and the sea-slugs produce a sort of firm jelly, in cords like vermicelli, the jelly enclosing hundreds of little sacs filled with liquid, in which the true germs or fertilised egg-cells float. These are all methods for protecting the young in their earliest condition. One of our pond-snails—the Paludina—keeps her eggs, whilst they develop, inside the dilated end of the tube which leads from the egg-producing organ or ovary to the exterior. The young snails nearest the opening to the exterior are the furthest advanced in development, and are as big as a dried pea. All stages, from the minute germ just fertilised to well-formed young, may be found in these snails, and the whole course of their development and gradual change and growth can be minutely studied with the microscope in one specimen.

Similar devices for protecting the young in their earliest helpless stages of growth from the egg-shell are found in all classes of animals. What is very curious is the fact that, of two closely allied animals, one species will recklessly lay its eggs and leave them, whilst another has special arrangements for retaining in the parent’s body the eggs as they develop, and so preserving them from danger. Such parents are called “viviparous.” Of course, in all viviparous animals, as well as in those which lay their eggs in hard shells, the fertilisation of the egg must be effected within the maternal body. Amongst our common fishes there is the viviparous blenny, often found in pools at low tide on the seashore. All the other British fresh-water and marine fishes lay their eggs and abandon them, excepting some sharks, dog-fish, and skates, which are viviparous; others of the shark and skate tribe lay eggs of large size encased in hard, horny shells. Every one knows that frogs and toads lay their eggs, but there are some kinds in which the eggs remain inside the mother’s body during the development of the young, which only escape into the world as well-formed little frogs. All the hairy, warm-blooded quadrupeds known as “the mammals” are viviparous, except the duck-mole and the spiny ant-eater of Australia. These extraordinary little “beasts” lay eggs like those of a bird.

The most ingenious devices for the protection of the young are (as perhaps those who believe in the superior intelligence of the male would expect) put into practice by the male parent. Thus, there is a large fish in tropical rivers which takes the eggs laid by the female into his capacious mouth, and swims about with them for three or four weeks, giving them the advantage of a current of water which runs through his mouth to his gills. When the young hatch they swim out of their fond father’s mouth. The male of pipe-fishes and of the little “sea-horse” receives the eggs laid by the female into a pouch excavated along his ventral surface. There the young hatch, and are guarded by the nursing father. On the other hand, some fathers impartially eat their own young, as well as those of other parents, and the mother has a hard job to protect her offspring. A female octopus (the poulp or eight-armed cuttle-fish) sits over her eggs in a nest built of pebbles at the bottom of the sea (or of an aquarium tank in the instance studied by me many years ago at Naples), and squirts a stream of pure sea-water over them. She resents the approach of a fish or a crab or a landing-net with splendid fury and recklessness of attack. Often the males of fishes, frogs, and birds guard the eggs, or guard the nest where the female is occupied in caring for the eggs or the young.

There are various species of oysters common in all parts of the world which are eaten as delicacies. Primeval (Neolithic) man ate oysters (the common sort) in Denmark in enormous quantity—great heaps of the discarded oyster-shells are found, buried among which are discovered stone axe-heads and bits of rude pottery. In the West Indies travellers relate that the oysters “climb” the trees which overhang the water of quiet creeks and inlets of the sea. The fact is that the branches of the mangrove trees dip into the water, and the young oyster “spat” attaches itself to the immersed twigs. After a year or two, the tree grows vigorously, and raises its branches up in its growth, so that the oysters are carried far up above the sea waves. Of course they die under these conditions, but their position suggests the explanation that the oysters have climbed up the trees. Ship barnacles fix themselves, similarly, to the twigs of willow trees in the quiet sea lochs of the West of Scotland, and this led 500 years ago to the belief that the catkins of the willow tree ripen into barnacles. Since it was also held that the little animal of the barnacle hatches out of its shell as a young goose—the so-called “barnacle goose”—the marvellous story was believed that these geese are actually budded from willow trees. I believe that the supposed relationship of the goose and the ship’s barnacle arose solely from the accidental similarity of the names of the two animals—the “bernack” goose and the sea “barnacle” being names of independent origin. The names were different originally in sound and signification, but were corrupted by fisher-folk into one and the same word. Hence a fantastic fable took its growth.

In Paris you may test and compare several local varieties of the common oyster in a celebrated oyster-shop. There are Courseilles, Cancales, Marennes, Ostend, Zeeland, Arcachon, English natives, Côtes Rouges (red banks), and Black Rocks. And you can eat sea-urchins there, too, if you wish. They have not, however, got the celebrated oysters from the Lake Fusaro, near Naples. This was the ancient Acherusia palus, and in the neighbouring Lake Avernus and the Lucrine lake oysters were cultivated by the ancient Romans, the young oysters being made to affix themselves at “the fall of the spat” to wooden “stands” or frames, which were then placed in the lake (a salt-water lake), where they had abundant minute vegetable food and grew large and fat. The same cultivation, with the same shape of “stands,” is carried on at the present day in the Lake Fusaro. My friend, Mr. Günther, of Magdalen College, Oxford, has published pictures of Roman tiles from this neighbourhood showing the oysters adhering in rows to the wooden frames. These tiles were apparently sold to holiday visitors in the time of the Roman emperors as a memento of a happy day spent at the Lucrine lake, just as a sugar basin or a mug is now sold at our seaside resorts with the inscription, “A present from Margate,” or Southport, or Blackpool, and the picture of a shrimp above it.

The care of the breeding oyster and the plans adopted by the owners of oyster-beds for catching the “spat,” or young oysters, when they fall to the bottom, by placing movable tiles or frames for them to fix themselves to, form an important part of the craft of the oyster-man. It is a difficult business, and is variously carried out in England, France, Holland, and America. The young oysters, when they have fixed themselves, are carried on the movable tiles or frames from one region to another for the purpose of encouraging their growth and avoiding a variety of dangers to their life and health (sometimes from the Bay of Biscay to the mouth of the Thames!). They are often—but not always—finally fed up in sea-ponds or inlets, which are peculiar in containing an enormous number of those very minute microscopic plants, with beautifully shaped siliceous shells, which are known as diatoms. These are so abundant in such ponds as to form a sort of powder or cloud near the bottom, and the oysters draw them, day and night, by their gill-currents into their mouths, digest them, and grow fine and fat. The district of Marennes, on the west coast of France, is celebrated for having sea-ponds or tanks in which a wonderful diatom of a bright blue colour abounds; so abundant are they that the cloud produced by them in the pools is of a deep cobalt-blue. When oysters are placed in these tanks to fatten, their gills or beards become rich blue-green in colour. They lose the colour after ten days, when removed to ordinary tanks. These are the celebrated green oysters or “Marennes vertes” of French restaurants. The colouring matter of the little diatoms—swallowed by the million and digested—is taken up by the blood of the oyster from its stomach, and is excreted by certain corpuscles on the surface of the gills—as I showed some twenty-five years ago—just as red madder is deposited in the bones of a pig fed upon madder, and as the feathers of the canary take up the colour of cayenne pepper when it is mixed with the canary’s food. It used to be thought that the green colour of the green oyster is due to copper—and that opinion was supported by the curious fact that the blood of all oysters and other molluscs, and also of lobsters, scorpions, and king-crabs, does really contain a minute quantity of copper, just as our blood contains iron! It was also supported by the fact that occasionally a fraudulent fishmonger, when asked to supply green oysters, has been convicted of colouring the beards of ordinary oysters with green copper salt, so as to imitate the real article! The real history of the green-bearded oysters is now quite certain, and any one interested in the matter should look at the coloured pictures of the beautiful little blue-coloured Navicula ostrearia—the diatom on which this oyster feeds, published by me in the Quarterly Journal of Microscopical Science in 1885.


[XV]
MATERNAL CARE AND MOLLUSCS