very much smaller than, Sachs’ result with the sunflower, viz. 63 cm. per hour.
The data are however hardly worth treating in this manner. But it is of historic interest to note that when Sachs was at work on his Pflanzenphysiologie, published in 1865, he was compelled to go back nearly 140 years to find any results with which he could compare his own.
We need not follow Hales into his comparison between the “perspiration” of the sunflower and that of a man, nor into his other transpiration experiments on the cabbage, vine, apple, etc. But one or two points must be noted. He found [127a] the “middle rate of perspiration” of a sunflower in 12 hours of daylight to be 20 ounces, and that of a “dry warm night” about 3 ounces; thus the day transpiration was roughly seven times the nocturnal rate. This difference may be accounted for by the closure of the stomata at night, a phenomenon unknown to Hales.
Hales [127b] notes another point which a knowledge of stomatal behaviour might have explained, viz., that with “scanty watering the perspiration much abated”; he does not attempt an explanation, but merely refers to it as a “healthy latitude of perspiration in this sunflower.”
In the course of his work on sunflowers he notices that the flower follows the sun. He says, however that it is “not by turning round with the sun,” i.e. that it is not a twisting of the stalk, and
goes on to call it nutation, which must be the locus classicus for the term used in this sense.
An experiment [128a] that I do not remember to have seen quoted elsewhere is worth describing. It is incidentally of interest as showing the generous scale on which his work was planned. An apple bough five feet long was fixed to a vertical glass tube nine feet long. The tube being above and the branch hanging below, the pressure of the column of water would act in concert with the suck of the transpiring leaves, instead of in opposition to this force. He then cut the bare stem of his branch in two, placing the apical half of the specimen (bearing side branches and leaves) with its cut end in a glass vessel of water; the basal and leafless half of the branch remained attached to the vertical tube of water. In the next 30 hours only 6 ounces dripped through the leafless branch, whereas the leafy branch absorbed 18 ounces. This, as he says, shows the great power of perspiration. And though he does not pursue the experiment, it is worthy of note as an attempt, like those of Janse [128b] and others, to correlate the flow of water under pressure with the flow due to transpiration.
It is interesting to find that Hales used the three methods of estimating transpiration which have been employed in modern times—namely, (i) weighing, (ii) a rough sort of potometer, (iii) enclosing a branch in a glass balloon and collecting
the precipitated moisture, the well-known plan followed by various French observers.
He (Vegetable Staticks, p. 51) concluded his balance of loss and gain in transpiring plants by estimating the amount of available water in the soil to a depth of three feet, and calculating how long his sunflower would exist without watering. He further concludes (p. 57) that an annual rainfall of 22 inches is “sufficient for all the purposes of nature, in such flat countries as this about Teddington.”