Incubator
(Temperature of blood-heat, registered by thermometer, and regulated by thermo-regulator)
Moisture has been shown to have a favourable effect upon the growth of microbes. Drying will of itself kill many species (e. g., the spirillum of cholera), and, other things being equal, the moister a medium is, the better will be the growth upon it. Thus it is that the growth in broth is always more luxuriant than that on solid media. Yet the growth of Bacillus subtilis and other species is an exception to this rule, for they prefer a dry medium.
Culture Media Ready for Inoculation
Temperature. Most bacteria grow well at room temperature, but they will grow more luxuriantly and speedily at blood-heat. The optimum temperature is generally that of the natural habitat of the organism. In exceptional cases growth will occur as low as 5° C. or as high as 70° C. Indeed, some have been cooled to-20° C. and-30° C., and yet retained their vitality,[8] whereas some few can grow at 60–70° C. These latter are termed thermophilic bacteria. The average thermal death-point is at or about 50° C.
Inoculating Needles
Plantinum wire fused into glass handles
Light acts as an inhibitory or even germicidal agent. This fact was first established by Downes and Blunt in a memoir to the Royal Society in 1877. They found by exposing cultures to different degrees of sunlight that thus the growth of the culture was partially or entirely prevented, being most damaged by the direct rays of the sun, although diffuse daylight acted prejudicially. Further, these same investigators proved that of the rays of the spectrum which acted inimically the blue and violet rays acted most bactericidally, next to the blue being the red and orange-red rays. The action of light, they explain, is due to the gradual oxidation which is induced by the sun's rays in the presence of oxygen. Duclaux, who worked at this question at a later date, concluded that the degree of resistance to the bactericidal influence of light which some bacteria possess might be due to difference in species, difference in culture media, and difference in the degrees of intensity of light. Tyndall tested the growth of organisms in flasks exposed to air and light on the Alps, and found that sunlight inhibited the growth temporarily. A large number of experimenters in Europe and England have worked at this fascinating subject since 1877, and though many of their results appear contradictory, we may be satisfied to adopt the following conclusions respecting the matter:
(1) Sunlight has a deleterious effect upon bacteria, and to a less extent on their spores.