Hours.No. of Germs
per cc.
0 1,073
6 6,028
24 7,262
48 48,100

Another series of observations revealed the same sort of rapid increase of bacteria. On the date of collection the micro-organisms per cc. in a deep-well water (in April) were seven. After one day's standing at room temperature the number had reached twenty-one per cc. After three days under the same conditions it was 495,000 per cc. At blood-heat the increase would, of course, be much greater, as a higher temperature is more favourable to multiplication. But this would depend upon the degree of impurity in the water, a pure water decreasing in number on account of the exhaustion of the pabulum, whereas, for the first few days at all events, an organically polluted water would show an enormous increase in bacteria.

Furthermore, it is desirable to remember that organisms, in an ordinary water, do not continue to increase indefinitely. There is a limit to all things, even to numbers in bacteriology. Cramer, of Zurich, examined the water of the Lake after it had been standing for different periods, with the following results:—

Hours and Days of
Examination.
No. of Micro-organisms
per cc.[12]
0hours143
24"12,457
3days328,543
8"233,452
17"17,436
70"2,500

The writer's own experience is entirely in agreement with this cessation of multiplication at or about the end of a week, and the later decline.

Method of Examination. At the outset of a systematic study of a water it is well to observe its physical characters. The colour, if any, should be noted. Suspended matter and deposit may indicate organic or inorganic pollution. If abundant or conspicuous, a microscopic examination of the sediment may be made. The reaction, whether acid, neutral, or alkaline, must be tested, and the exact temperature taken. Any and every fact will help us, perhaps not so much to determine the contents of the water as to interpret rightly the facts we deduce from the entire examination.

Levelling Apparatus for Koch's Plate

At the beginning of the bacteriological work the water should be examined by means of the gelatine plate method. This consists in drawing up into a fine sterilised pipette a small quantity of the water and introducing it thereby into a test-tube of melted gelatine at a temperature below 40° C.[13] It will depend upon the apparent quality of the water as to the exact quantity introduced into the gelatine; about .5 or .1 of a cubic centimetre is a common figure. The stopper is then quickly replaced in the test-tube, and the contents gently mixed more or less equally to distribute the one-tenth cubic centimetre throughout the melted gelatine. A sterilised sheet of glass (4 inches by 3) designated a Koch's plate is now taken and placed upon the stage of a levelling apparatus, which holds iced water in a glass jar under the stage. The gelatine is now poured out over the glass plate, and by means of a sterilised rod stroked into a thin, even film all over the glass. It is then covered with a bell-jar and left at rest to set. The level stage prevents the gelatine running over the edge of the plate; the iced water under the stage expedites the setting of the gelatine into a fixed film. When it is thus set the plate is placed upon a small stand in a moist chamber, and the whole apparatus removed to the room temperature incubator. A moist chamber is a glass dish, in which some filter paper, soaked with corrosive sublimate, is inserted, and the dish covered with a bell-jar. By this means the risks of pollution are minimized, and moisture maintained. In all cases at least two plates must be prepared of the same sample of water, and it is often advisable to make several. They may be made with different media for different purposes, and with different quantities of water, though the same method of procedure is adopted. In a highly polluted water extremely small quantities would be taken, and, vice versâ, in pure water a large quantity.