5. Inoculation of Animals. It may be necessary to observe the action of supposed pathogenic organisms upon animals. This is obviously a last resource, and any abuse of such a process is strictly limited by law. As a matter of fact, an immense amount of bacteriological investigation can be carried on without inoculating animals; but, strictly speaking, as regards many of the pathogenic bacteria, this test is the most reliable of all. Nor would any responsible bacteriologist be justified in certifying a water as healthy for consumption by a large community if he was in doubt as to the disease-producing action of certain contained organisms.

Types of Liquefaction of Gelatine

By working through some such scheme as the above we are able to detect what quantity and species of organisms, saprophytic or parasitic, a water or similar fluid contains. For, observe what information we have gained. We have learned the form (whether bacillus, micrococcus, or spirillum), size, consistence, motility, method of grouping, and staining reactions of each micro-organism; the characters of its culture, colour, composition, presence or absence of liquefication or gas formation, its rate of growth, smell, or reaction; and lastly, when necessary, the effect that it has upon living tissues. Here, then, are ample data for arriving at a satisfactory conclusion respecting the qualitative estimation of the suspected water.

As to to the quantitative examination, that is fulfilled by counting the number of colonies which appear, say by the third and fourth day, upon the gelatine plates. Each colony has arisen, it is assumed, from one individual, so that if we count the colonies, though we do not thereby know how many organisms we have upon our plate, we do know approximately how many organisms there were when the plate was first poured out, which are the figures we require, and which can at once be multiplied and returned as so many organisms per cubic centimetre. There is, unfortunately, at present no exact standard to which all bacteriologists may refer.

Miquel and Crookshank have suggested standards which allow "very pure water" to contain up to 100 micro-organisms per cc. Pure water must not contain more than 1000, and water containing up to 100,000 bacteria per cc. is contaminated with surface water or sewage. Macé gives the following table:

Very pure water0-10 bacteria per cc.
Very good water20-100bac"eria per"eri
Good water100-200bac"eria per"eri
Passable (mediocre) water200-500bac"eria per"eri
Bad water500-1,000bac"eria per"eri
Very bad water1000-10,000 and overeri"eri

Koch first laid emphasis on the quantity of bacteria present as an index of pollution, and whilst different authorities have all agreed that there is a necessary quantitative limit, it has been so far impossible to arrive at one settled standard of permissible impurity.

Besson adopts the standard suggested by Miquel, and, on the whole, French bacteriologists follow suit. They also agree with him, generally speaking, in not placing much emphasis upon the numerical estimation of bacteria in water. In Germany and England it is the custom to adopt a stricter limit. Koch in 1893 fixed 100 bacteria per cc. as the maximum number of bacteria which should be present in a properly filtered water. Hence the following has been recognised more or less as the standard: