We may here digress to refer in passing to the facts obtainable from Sir Edward Frankland's report on Metropolitan water supply in 1894, as they will afford a connecting link between self purification and artificial purification. Judged by the relatively low proportion of carbon to nitrogen, the organic matter present in the water was, as usual, found to be chiefly, if not entirely, of vegetable origin. An immense destruction of bacteria was found to be effected by storage in subsidence reservoirs. The bacterial quality of the water might differ widely from its chemical qualities. These three facts are of primary importance in the interpretation of water reports, and it will be well to bear them in mind. Sir E. Frankland also refers to the physical conditions affecting microbial life in river waters. The importance of changes of temperature, the effect of sunlight, and rate of flow had been referred to in previous reports. Respecting the relative proportion of these factors, he adds:

"The number of microbes in Thames water is determined mainly by the flow of the river, or, in other words, by the rainfall, and but slightly, if at all, by either the presence or absence of sunshine, or a high or low temperature. With regard to the effect of sunshine, the interesting researches of Dr. Marshall Ward leave no doubt that this agent is a powerful germicide, but it is probable that the germicidal effect is greatly diminished, if not entirely prevented, when the solar rays have to pass through a comparatively thin stratum of water before they reach the living organisms."

From which it is clear that evidence favours the effect of sedimentation and dilution. These two factors in conjunction with filtration are, practically speaking, the methods of artificial water purification, with which we are now in a position to deal.

ARTIFICIAL PURIFICATION OF WATER

Sedimentation and Precipitation. Naturally, we see this factor in action in lakes or reservoirs. For example, the water supply of Glasgow is the untreated overflow from Loch Katrine. Purification has been brought about by means of subsidence of impurities. Nothing further is needed. Artificially, we find it is this factor which is the mechancial purifier of biological impurity in such methods as Clark's process. By this mode "temporary hardness," or that due to soluble bicarbonate of lime, is converted into insoluble normal carbonate of lime by the addition of a suitable quantity of lime-water. Carbonates of lime and magnesia are soluble in water containing free carbonic acid, but when fresh lime is added to such water it combines with the free CO2 to form the insoluble carbonate, which falls as a sediment:

CaCO3 + CO2 + CaH2O2 (lime-water) = 2 CaCO3 + H2O.

As the carbonate falls to the bottom of the tank it carries down with it the organic particles. Hence sedimentation is brought about by means of chemical precipitation. It is obviously a mechanical process as regards its action upon bacteria. Nevertheless its action is well-nigh perfect, and 300 or 400 m.-o. per cc. are reduced to 4 or 5 per cc. We shall refer to this same action when we come to speak of bacterial purification of sewage. Alum has been frequently used to purify waters which contain much suspended matter. Five or six grains of alum are added to each gallon of water, with some calcium carbonate by preference. Precipitation occurs, and with it sedimentation of the bacteria, as before. But, as Babes has pointed out, alum itself acts inimically on germs; in such treatment, therefore, we get sedimentation and germicidal action combined.

As a matter of actual practice, however, sedimentation alone is rarely sufficient to purify water. It is true that the collection of water in large reservoirs permits subsidence of suspended matters, and affords time for the action of light and the competitive suicidal behaviour of the common water bacteria. Yet, after all, filtration is the most important and most reliable method.

Sand Filtration, as a means of purifying water, has been practised since the early part of the present century. But it was not till 1885 that Percy Frankland first demonstrated the great difference in bacterial content between a water unfiltered and a water which had passed through a sand filter. Previous to this time the criterion of efficiency in water purification had been a chemical one only, and the presence or absence of bacteria in any appreciable quantity was described, not in mathematical terms, but in indefinite descriptive words, like "turbid," "cloudy," etc. It is needless to say that this difference in estimation was due to the introduction by Koch of the gelatine-plate method of examination. As a result of Percy Frankland's work, he formulated the following conclusions as regards the chief factors influencing the number of microbes passing through the filter.