Another model which is of a more elaborate character shows us the sort of motion made in a tube when a sound wave due to a continuous musical sound is passing along it. It consists of a glass disc which is blackened, and has the paint removed along certain excentric circular lines. This disc is made to revolve in front of a wide slit in a piece of metal. By means of an optical lantern we project on to the screen an image of the slit, which you see is crossed by certain bright bars of light, crowded together at some places and more spaced apart at others. When the disc revolves, these bars of light each move to and fro successively, and the result is that the crowded place moves along, or is displaced.
A wave of compression is propagated along the slit, and the localities where the bars of light are compressed or expanded continually change their place. If we imagine the air in a tube to be divided into slices, represented by these bars of light, the motion of the model exactly represents the motion of the air in the tube when it is traversed by a series of sound waves.
The distance from one place of greatest compression to the next is called the wave-length of the sound wave. Hence, although a sound such as that of an explosion may consist in the propagation of a single layer of compression, the production of a continuous musical note involves the transference of a series of equidistant compressional zones, or waves.
These models will have assisted you, I trust, to form a clear idea of the nature of a sound wave in air. It is something very different, in fact, from a wave on the surface of water, but it is characterized by the same general qualities of wave-motion. It is a state of longitudinal periodic motion in a row of particles, which is handed on from one to another. Each particle of air oscillates in the line of propagation of the wave, and moves a little way backwards and forwards on either side of its undisturbed position.
It will be seen, therefore, that a solitary sound wave is a state of air-compression which travels along in the otherwise stationary air. The air is squeezed more tightly together in a certain region, and successive layers of air take up this condition. In the case of water-surface waves the wave is a region of elevation at which the water is raised above the general or average level, and this elevated region is transferred from place to place on otherwise stationary water. In the case of an air-wave train we have similar regions of compression following each other at distances, it may be, of a fraction of an inch or of several feet.
Thus in the case of ordinary speech or song, the waves are from 2 to 8 feet in length, that is, from one compressed region to the next. In the case of a whistle, the wave-length may be 1 or 2 inches, whilst the deepest note of an organ produces a sound of which the wave-length is about 32 feet.
As in every other instance of wave-motion, air waves may differ from each other in three respects. First, in wave-length; secondly, in amplitude; and thirdly, in wave-form. The first determines what we call the tone, i.e. whether the sound is high or low, treble or bass; the second determines the intensity of the sound, whether faint or loud; and the third determines its quality, or, as the Germans expressively call it, the sound-colour (Klangfarbe).
We recognize at once a difference between the sound of a vowel, say ah, sung by different persons to the same note of the piano and with the same loudness. There is a personal element, an individuality, about voices which at once arrests our attention, apart altogether from the tone or loudness. This sound-quality is determined by the form of the wave-motion, that is, by the nature of the movement of the air-particle during its little excursion to and fro in which it takes part in producing a zone of compression or rarefaction in the air and so forms a sound wave.
We have next to discuss the speed with which this air-compression is propagated through the air. Every one knows that it is not instantaneous. We see the flash of a gun at a distance, and a second or so afterwards we hear the bang. We notice that the thunder is heard often long after the lightning flash is seen. It would take too long to describe the experiments which have been made to determine precisely the speed of sound waves. Suffice it to say that all the best experiments show that the velocity of a sound wave in air, at the temperature of melting ice, or at 0° C. = 32° Fahr., is very nearly 1087 feet per second, or 33,136 centimetres per second. This is equivalent to 741 miles per hour, or more than ten times the speed of an express train. At this rate a sound wave would take 4 hours to cross the Atlantic Ocean, 16 hours to go half round the world or to the antipodes, and some 2 minutes to cross from Dover to Calais.
An opportunity of observing this speed of sound waves on a gigantic scale occurred about 20 years ago on the occasion of a great volcanic eruption near Java. If you open the map of Asia and look for Java and Sumatra in the Asiatic Archipelago, you will easily find the Sunda Strait, and on a good map you will see a small island marked called Krakatoa. This island possesses, or rather did possess, a volcano which, until the year 1883, had not been known to be in eruption. In that year, however, it again burst into activity, and after preliminary warnings a final stupendous outburst occurred on August 27, 1883. The roar of this volcanic explosion was probably the loudest noise ever heard upon this earth. The pent-up volcanic gases and vapours burst forth from some subterranean prison with such appalling power that they created an air wave which not only encircled the earth, but reverberated to and fro seven times before it finally faded away. The zone of compressed air forming the mighty air wave as it passed from point to point on the earth’s surface, caused an increase of atmospheric pressure which left its record on all the self-registering barometers, and thus enabled its steps to be traced. A diligent examination of these records, as collected in a celebrated Report of the Royal Society upon the Eruption of Krakatoa, showed exactly the manner in which this great air wave expanded. Starting from Krakatoa at 10 a.m. on the 27th of August, 1883, the air wave sped outwards in a circle of ever-increasing diameter until, by 7 p.m. on the same day, or 9 hours later, it formed a girdle embracing the whole world. This stupendous circular air wave, 24,000 miles in circumference, then contracted again, and in 9 hours more had condensed itself at a point in the northern region of South America, which is the antipodes of Krakatoa. It then rebounded, and, expanding once more, just like a water wave reflected from the side of a circular trough, returned on its own steps, so that 36 hours afterwards it had again reached the point from whence it set out. Again and again it performed the same double journey, but each time weaker than before, until, after seven times, the echoes of this mighty air wave had completely died away. This is no fancy picture, but a sober record of fact obtained from the infallible records of self-registering air-pressure-measuring instruments. But we have evidence that the actual sound of the explosion was heard, 4 hours after it happened, on the other side of the Indian Ocean, by human ears, and we have in this an instance of the measurement of the velocity of sound on the largest scale on which it was ever made.