When the spherical wave meets the lens, the central portion of the wave passes into a retarding medium, whilst the right and left wings of the wave are still in air. Hence, as before, the wings gain on the centre. Again, at emergence the wings emerge before the centre of the wave, and hence again the wings gain on the centre. After complete emergence the spherical wave-surface has been flattened out and made into a plane wave. Hence the sound-rays diverging from the whistle are rendered parallel or even convergent, provided that the whistle is properly placed with regard to the lens.
You will see, therefore, that we can use a gas denser than the air, contained in a transparent bag or vessel of collodion, as the means of changing the form and direction of sound waves. We can make lenses and prisms of carbonic acid gas which act on rays of sound just as do lenses and prisms of glass on rays of light. There is, however, one great difference between the operation of a carbonic acid prism on rays of sound, and that of a glass or other prism on rays of light. In the lectures on æther waves it will be made clear to you that what we call light really consists in waves in a medium known as the æther. But when such light waves are propagated through a transparent material like glass, the speed of transmission depends on the wave-length, just as in the case of water waves. But as regards sound waves there is no difference between the velocity of propagation or speed with which waves of different wave-lengths move. Hence a bass note travels just as fast as a treble note, and the sound waves from a flute have a speed of the same value as that from a trumpet or bassoon. If it were not so, it would be impossible for us to hear music or song at a distance, because the notes would arrive all in the wrong order, and the most familiar melody would be unrecognizable. It follows from this that air waves, no matter what their wave-length, are equally refracted on passing from one medium to another of different density. We shall see later on that this is not the case with waves of light and æther waves generally.
In the case of most transparent substances the æther waves which constitute light are transmitted with different velocities, the longer waves moving faster than the shorter ones. Hence we have the familiar result of the decomposition of a ray of white light into its different constituents by a glass prism. We cannot, however, perform a similar experiment on a complex series of waves of sound by means of a carbonic acid prism. In other words, a sound-prism refracts, but does not disperse sound waves of various wave-lengths.
One thing, however, should be pointed out before dismissing this experiment, and that is that to show successfully the experiment with the prism, the length of the sound waves used must be small compared with the dimensions of the prism. The reason for this is that otherwise there would be too much bending of the waves round the obstacle. When a train of waves, no matter whether waves in air or waves in water, meets with an impervious body, there is always a certain bending of the waves round it, which is technically called diffraction. We may see this effect on a large scale when sea waves, rolling in, pass by some large rock standing up like an island out of the water. The waves meet it, pass round it, and, so to speak, embrace it and continue on the other side. If there is to be any calm water on the leeward side, the island must be large compared with the length of the waves. The same thing holds good with regard to air waves.
In order that an object may form an acoustic or sound-shadow, it is necessary that the construction shall be large compared with the length of the wave.
Thus the hand held in front of the mouth does not much obstruct the waves of the speaking voice, because these waves are about 2 to 4 feet long. But as you have seen when using sound waves only 1 inch long, the hand will form a very well-marked sound-shadow, as shown by its effect when held between a whistle and a sensitive flame.
In order to complete our proof that the agency which affects our ears as sound is really due to air waves, it is necessary to be able to show that we can produce interference with air waves, as in the case of waves on water. The nature of the effect called interference by which one wave is made to annihilate another has been already fully explained. I will now endeavour to exhibit to you the interference of two sound-wave trains in an experiment due to Lord Rayleigh, the apparatus for which he has kindly lent to me.
It consists, as you see, of a stand, to which is fixed a jet, from which we form a tall sensitive flame. Behind the flame is placed a sheet of glass, which is held vertically, but can be slid towards or from the flame. At a little distance we place a bird-call, or sort of whistle, which produces, when blown with air, a note so shrill as to be inaudible to human ears.
The air-vibrations so generated are at the rate of 33,000 per second, which is beyond the limit of audition. Hence, even when blown strongly, you hear no sound from this appliance.
It produces, however, as you can see, a very violent effect upon the sensitive flame. Hence this flame hears a note which we cannot hear, and it suggests that perhaps some animals or insects may have a range of hearing quite beyond the limits fixed for our human ears.