An organ-pipe is only a more perfect means for doing the same thing. Organ-pipes may be either open or closed pipes. Also they have either a reed or a flute at one end for the purpose of establishing air-vibrations when a current of air is blown into the pipe. The form of organ-pipe most easy to understand is the closed flute pipe. This consists of a wooden tube closed at the upper end, and at the lower end having a foot-tube and mouthpiece as shown in section in [Fig. 57]. When a gentle current of air is blown in at the foot-tube, it impinges on the sharp edge or chamfer of the mouthpiece, and it acts just as when blown across the open end of a simple closed pipe. That is to say, it sets up a state of alternate compression and expansion of the air in the pipe. At the closed end, period-changes in density in the air are established, but no great movement takes place. At the open end or mouth there are no great changes of density, but the air is alternately moving in and out at the mouthpiece. The steady blast of air against the chamfer, therefore, sets up a state of steady oscillation of the air in the pipe, the air being squeezed up and extended alternately so that there is first a state of compression, and then a state of partial rarefaction in the air at the closed end of the pipe. In this case, also, the wave-motion communicated to the surrounding air has a wave-length equal to four times the length of the pipe.

Fig. 58.—An open organ-pipe.

If we open the upper end of the pipe, it at once emits a note which has a wave-length equal to double the length of the pipe. Hence the note emitted by an open-ended organ-pipe is an octave higher than that given out by a closed organ-pipe of the same length.

The action of an open organ-pipe is not quite so easy to comprehend as that of a closed pipe. The difficulty is to see how stationary air waves can be set up in a pipe which is open at both ends. The easiest way to comprehend the matter is as follows: When the blast of air against the lip of the pipe begins to partially exhaust the air in it, the rarefaction so begun does not commence everywhere in the pipe at once. It starts from the mouthpiece end, and is propagated along the pipe at a rate equal to the velocity of sound. The air at the open ends of the pipe moves in to supply this reduced pressure, and, in so doing, overshoots the mark, and the result is a region of compression is formed in the central portions of the pipe ([see Fig. 58]). The next instant this compressed air expands again, and moves out at the two open ends of the pipe. We have thus established in the pipe an oscillatory state which, at the central region of the pipe, consists in an alternate compression and expansion or rarefaction of the air, whilst at the open end and mouthpiece end there is an alternate rushing in and rushing out of the air. Hence in the centre of the pipe we have little or no movement of the air, but rapid alternations of pressure, or, which is the same thing, density; and at the two ends little or no change in density, but rapid movement of the air in and out of the pipe.

An analogy between the vibration of the air in a closed and open organ-pipe might be found in considering the vibration of an elastic rod—first, when clamped at one end, and secondly, when clamped at the two ends. The deflection of the rod at any point may be considered to represent change of air-pressure, and the fixed point or points the open end of the pipe at which there can be no change of density, because there it is in close communication with the open air outside the pipe. It is at once evident that the length of the open organ-pipe, when sounding its fundamental tone, is one-half of the length of the air wave it produces. Accordingly, from the formula, wave-velocity = frequency × wave-length, we see that, since the velocity of sound at ordinary temperature is about 1120 feet per second, an approximate rule for obtaining the frequency of the vibrations given out by an open organ-pipe is as follows:⁠—

Frequency = 1120 divided by twice the length of pipe.

We say approximate, because, as a matter of fact, for a reason rather too complicated to explain here, the wave-length of the air-vibrations is equal to rather more than double the length of the pipe. In fact, what we may call the effective length of the pipe is equal to its real end-to-end length increased by a fraction of its diameter, which is very nearly four-fifths.

Fig. 59.