The performer varies the note given by each string by shortening its vibrating length by pressing the finger upon it. The skilled violinist has also great control over the tone, and can determine the harmonics, or overtones, which shall accompany the fundamental by altering the point on the string at which the bow is applied, and lightly touching it at some other point.
The great art in the construction of the violin rests in the manufacture of the wooden body. Its form, materials, and minute details of construction have been the subject of countless experiments in past ages, and until quite recently no essential improvement was made in the instrument as completed by the masters of violin construction three centuries ago. In classical form the violin consists of a wooden box of characteristic shape, composed of a back, belly, and six ribs. These are shaped out of thin wood, the belly being made of pine, and maple used for the rest. A neck or handle is affixed to one end, and a tail-piece, to which the gut-strings are fastened, to the other.
The strings are strained over a thin piece of wood which rests on two feet on the belly. One of these feet rests over a block of wood in the interior of the box called the sound-post, and this forms a rigid centre; the other foot stands on the resonant part of the belly. The belly is strengthened in addition by a bar of wood, which is glued to it just under the place where the active foot of the bridge rests. The ribs or sides of the box are bent inwards at the centre to enable the playing-bow to get at the strings more easily. The selection of the wood and its varnishing is the most important part of the construction. The wood must be elastic, and its elasticity has to be preserved by the use of an appropriate hard varnish, or else it will not take up the vibrations imparted by the strings. The old makers used wood which was only just sufficiently seasoned, and applied their varnish at once.
An essential adjunct is a good bow, which is of more importance than generally supposed. Something may be got out of a poor violin by a good player, but no one can play with a bad bow.
The process of eliciting a musical tone from the violin is as follows: The player, holding the instrument in the left hand, and with its tail end pressed against the left shoulder, places a finger of the left hand lightly on some point on a string, and sweeps the bow gently across the string so as to set it in vibration, yielding its fundamental note, accompanied by the lower harmonics. The purity and strength of the note depend essentially upon the skill with which this touch of the bow is made, creating and sustaining the same kind of vibration on the string throughout its sweep. The string then presses intermittently on the bridge, and this again turns, so to speak, round one foot as round a pivot, and presses intermittently on the elastic wooden belly. The belly takes up these vibrations, and the air in the interior is thrown into sympathetic vibration by resonance. The sound escapes by the ƒ-holes in the belly. The extraordinary thing about the violin is that the shape of the box permits it to take up vibrations lying between all the range of musical tones. The air-cavity does not merely resonate to one note, but to hundreds of different rates of vibration.
The peculiar charm of the violin is the quality of the sound which a skilled player can elicit from it. That wonderful pleading, sympathetic, voice-like tone, which conveys so much emotional meaning to the trained musical ear, is due to the proper admixture of the harmonics, or overtones, with the fundamental notes. The string vibrates not merely as a whole, but in sections. Hence the place at which the bow touches must always be an anti-node, or ventral point, and the smallest change in this position greatly affects the quality of the tone.
Quite recently an entirely new departure has been made in violin construction by Mr. Augustus Stroh, a well-known inventor. He has abolished the wooden body and bridge, and substituted for them an aluminium trumpet-shaped tube as the resonant chamber, ending in a circular corrugated aluminium disc, on the centre of which rests an aluminium lever pivoted at one point. The strings are strained over this lever, and held on a light tube, which does duty as a point of attachment of all parts of the instrument. The strings are the same, and the manipulation of the instrument identical with that of the ordinary violin. The vibrations of the strings are communicated by the pivoted lever over which they pass to the corrugated aluminium disc, and by this to the air lying in the trumpet-tube. This tube points straight away from the player, and directs the air waves to the audience in front. The tone of the new violin is declared by connoisseurs to be remarkably full, mellow, and resonant. The notes have a richness and power which satisfies the ear, and is generally only to be found in the handiwork of the classical constructors of the ordinary form of violin. One great advantage in the Stroh violin is that every one can be made perfectly of the same excellence. The aluminium discs are stamped out by a steel die, and are therefore all identical. The element of chance or personal skill in making has been eliminated by a scientific and mechanical construction. Thus the musician becomes possessed of an instrument in which scientific construction predominates over individual art or tradition in manufacture, yet at the same time the musical effects which skill in playing can produce are not at all diminished.
Whilst our attention has so far been fixed on the external operations in the air which constitute a train of music-making waves, it seems only appropriate to make, in conclusion, a brief reference to the apparatus which we possess in our ears for appreciating these subtle changes in air-pressure with certainty and pleasure. The ear itself is a marvellous appliance for detecting the existence of waves and ripples in the air, and it embodies in itself many of the principles which have been explained to-day.
Fig. 63.—Diagram of the human ear.