Fig. 78.—Converging a beam of electric radiation.

We have, therefore, here brought to a focus, by means of a paraffin lens, the electrical radiation just in the same manner that an ordinary burning-glass focuses the rays of light and heat of the sun, and enables us to light with it some paper or a cigar. We have, therefore, indubitable proof in all these experiments that we have something proceeding from the radiator which is capable of being reflected or refracted just like the rays of sound or ripples on the surface of water; and, moreover, we find that this electric radiation passes through some substances but not through others. There is, therefore, a strong presumption that we are here dealing with something which is similar in nature to light, although it cannot affect the eye. In order that we may complete the proof we must show that this radiation is susceptible of interference. This proof may be partly obtained from the consideration of the following facts connected with the opacity or transparency of wire grating to the electric radiation:⁠—

Fig. 79.

I have here a wooden frame across which are strained some wires about a quarter of an inch apart ([see Fig. 79]). If we hold this frame or grid in front of the radiator so that the direction of these wires is at right angles to the direction of the radiator rods which carry the balls, we find that the grid is quite transparent to the electric radiation, but if we turn the grid round so that the wires of the grid are parallel to the radiator rods, we find at once that the grid becomes perfectly opaque. The same experiment can be prettily shown by means of a paper of pins. Here are some large carpet pins arranged in rows in paper, and if I hold this paper of pins in between the radiator and receiver with the pins parallel to the radiator, it is perfectly opaque to the electric ray, but if I turn it so that the pins are at right angles, it is quite transparent. The same experiment succeeds with a paper of ordinary pins, but not so well with a paper of midget pins.

The explanation of this action of a grid is as follows: You have already seen that an alternating current in one electric circuit can produce another alternating current in a secondary circuit placed parallel with the first. It is not difficult to show, either experimentally or from theory, that when the primary current is an electrical oscillation—that is, a very rapid alternating current—the current in the secondary circuit is also an electrical oscillation of the same frequency or rapidity, but that the currents in the two circuits, primary and secondary, are always moving in opposite directions at the same moment. Accordingly, if we hold a grid in front of the radiator, the wires of the grid have what are called induced oscillations set up in them, and these induced oscillations themselves create electric radiation. Accordingly, it is clear that if a grid of this kind is held near to a radiator with the wires of the grid parallel to the radiator rods, we have two sets of radiations produced which, at any point on the side of the grid furthest from the radiator rods, must neutralize one another, and therefore destroy each other’s effect. Hence it is possible to cause the electric radiations proceeding from two electric circuits parallel with each other to destroy one another at a distant point; and we may, therefore, make use of the same arguments as in the case of a similar experiment with light to prove that this electric radiation must be a wave-motion.

It would occupy too much of our time, and it would involve the discussion of matters which are rather beyond the scope of elementary lectures, if we were to enter into a complete analysis of all the arguments proving that this electric radiation, which proceeds from an electric oscillator, is really a wave-motion. I may, however, mention one fact, which has been the outcome of an enormous amount of experimental research, and that is, that the velocity of this electric radiation through space is identical with that of light. It has already been mentioned that a ray of light flits through space at the rate of 1,000,000,000 feet, or nearly 186,500 miles a second. By suitable and very ingenious arrangements, physicists have been able to measure the velocity of electric radiation, and have found in every case that its velocity of propagation is precisely the same as a ray of light.

Let us, then, summarize briefly what we have learnt. We find that when we set up an electrical oscillation in an open circuit consisting of two metallic rods placed in one straight line, we have proceeding from this circuit an electrical radiation which is capable of being propagated through space, which moves in straight lines, can be reflected and refracted, can exhibit the phenomena of interference, and moreover which is propagated with exactly the same velocity as light. Is it possible to resist the conclusion that this effect which we call electric radiation, and the similarly behaving physical agency which we call light, must both be affections of the same medium? It is hardly necessary to occupy time with experiments in showing that a ray of light can be reflected and refracted by mirrors and prisms, and converged or diverged by transparent lenses. These are simple optical facts, and if you are not familiar with them it will be easy for you to make their acquaintance by studying any simple book upon optics; but I should like to draw your attention to the fact that, in addition to rays of light and electric radiation, we are acquainted with another kind of radiation, which is also susceptible of being refracted, and that is commonly called dark heat.

Supposing that we take an iron ball and make it red hot in a furnace, then, in a perfectly dark room, we see the ball glowing brilliantly, and we are conscious by our sensations that it is throwing off heat. Let us imagine that the ball is allowed to cool down to a temperature of about 500° C.; it will then just cease to be visible in a perfectly dark room, but yet if we hold our hand or a thermometer near to it, we can detect its presence by the dark radiant heat it sends out. Experiments show that even when the ball is brilliantly incandescent, nearly 98 or 99 per cent. of all the radiation it sends out is dark heat, and only 1 or 2 per cent. is radiation which can affect the eye as light. It is quite easy to show that this dark heat can be reflected just like light. If I fix this red-hot ball in the focus of a metallic mirror and lift up ball and mirror nearly to the ceiling and then place upon the table another convex, polished, metallic mirror, the top mirror will gather up and project downwards the radiation from the iron ball and the bottom mirror will converge that to a focus. If then we fix a red-hot ball in the focus of the upper mirror and allow it to cool until it is just not visible in the dark, we shall find that we can still ignite a piece of phosphorus or some other inflammable substance by holding it in the focus of the bottom mirror, thus showing that the dark radiation from the iron ball is susceptible of reflection just as are rays of light or electric rays. In fact, if time permitted, it would be possible to show a whole series of experiments with dark radiant heat which would prove that this radiation possesses similar properties of luminous or electric radiation in its behaviour as regards reflection, refraction, and interference.