Scientific investigation has made us acquainted with a vast range or gamut of æther-vibrations, and we are able to summarize our present knowledge as follows:⁠—

The physical effect we call light, and that which we have up to the present moment merely called electric radiation, are really identical in nature, and both consist in waves propagated through the space-filling æther, the only difference between them is in wave-length and wave-amplitude. In between these two classes of radiation comes a third, which is called the dark-heat radiation, and beyond the limits of visible radiation we are acquainted with another group of æther waves which cannot affect the eye as light, but which from their power to affect a photographic plate, is called actinic radiation. Hence, briefly speaking, four great groups of æther waves are known to us, called respectively⁠—

1. Actinic, or photographic rays.

2. Luminous, or light rays.

3. Ultra-red, or dark-heat rays.

4. Electric, or Hertz rays.

Convincing proof has been afforded that these various rays are essentially the same in nature, and that they consist in periodic disturbances or waves propagated through the æther in every case with the velocity of 186,500 miles, or 1000 million feet, or 30,000 million centimetres per second.

We may, therefore, say that these classes of æther waves differ from each other only in the same sense in which a bass note in music differs from a treble one; that is, the difference is a difference in frequency.

Just, therefore, as we have a gamut, or scale of musical tones, or air-vibrations of increasing frequency, so we may arrange a gamut or scale of æther waves progressively placed according to their vibration-rates. Our present knowledge concerning æther waves can best be exhibited by arranging in a chart a series of numbers showing the wave-lengths of the waves with which we are so far acquainted. As a limit of length we shall take the one-thousandth part of a millimetre. Most persons know that a millimetre is a thousandth part of a metre, and is a short length nearly equal to one twenty-fifth of an inch. The thousandth part of a millimetre is called a micron, and is denoted by the symbol 1μ. This last is therefore an exceedingly short length, nearly equal to one twenty-five thousandth part of an inch.

Following, also, the musical nomenclature, we shall speak of all those waves included between two wave-lengths, one of which is double or half the other, as an octave. Thus all the various waves whose wave-lengths lie between 1μ and 2μ in length are said to be an octave of radiation. As a preliminary to further discussion let us consider, in the first place, the simple facts about the radiation which affects our eyes as light.