In the larva of Chloëon (Pl. [IV.], Fig. 1), for instance, which in other respects so singularly resembles Campodea (Pl. [III.], Fig. 5), several of the segments are provided with foliaceous expansions which serve as respiratory organs. These so-called branchiæ are in constant agitation, and the muscles which move them in several points resemble those of true wings. It is true that in Chloëon the vibration of the branchiæ is scarcely, if at all, utilized for the purpose of locomotion; the branchiæ are, in fact, placed too far back to act efficiently. The situation of these branchiæ differs in different groups; indeed, it seems probable that originally there were a pair on each segment. In such a case, those branchiæ situated near the centre of the body, neither too much in front nor too far back, would serve the most efficiently as propellers: the same causes which determined the position of the legs would also affect the wings. Thus a division of labour would be effected; the branchiæ on the thorax would be devoted to locomotion; those on the abdomen to respiration. This would tend to increase the development of the thoracic segments, already somewhat enlarged, in order to receive the muscles of the legs.
That wings may be of use to insects under water is proved by the very interesting case of Polynema natans,[46] which uses its wings for swimming. This, however, is a rare case, and it is possible that the principal use of the wings was, primordially, to enable the mature forms to pass from pond to pond, thus securing fresh habitats and avoiding in-and-in breeding. If this were so, the development of wings would gradually have been relegated to a late period of life; and by the tendency to the inheritance of characters at corresponding ages, which Mr. Darwin has pointed out,[47] the development of wings would have thus become associated with the maturity of the insect. Thus the late acquisition of wings in the Insecta generally seems to be itself an indication of their descent from a stock which was at one period, if not originally, aquatic, and which probably resembled the present larvæ of Chloëon in form, but had thoracic as well as abdominal branchiæ.
Finally, from the subject of metamorphosis we pass naturally to that most remarkable phenomenon which is known as the “Alternation of Generations:” for the first systematic view of which we are indebted to my eminent friend Prof Steenstrup.[48]
I have always felt it very difficult to understand why any species should have been created in this double character; nor, so far as I am aware, has any explanation of the fact yet been attempted. Nevertheless insects offer, in their metamorphoses, a phenomenon not altogether dissimilar, and give a clue to the manner in which alternation of generations may have originated.
The caterpillar owes its difference from the butterfly to the undeveloped state in which it leaves the egg; but its actual form is mainly due to the influence of the conditions under which it lives. If the caterpillar, instead of changing into one butterfly, produced several, we should have an instance of alternation of generations. Until lately, however, we knew of no such case among insects; each larva produced one imago, and that not by generation, but by development. It has long been known, indeed, that there are species in which certain individuals remain always apterous, while others acquire wings. Many entomologists, however, regard these abnormal individuals as perfect, though wingless insects; and therefore I shall found no argument upon these cases, although they appear to me deserving of more attention than they have yet received.
Recently, however, Prof. Wagner[49] has discovered that, among certain small gnats, the larvæ do not directly produce in all cases perfect insects, but give birth to other larvæ, which undergo metamorphoses of the usual character, and eventually become gnats. His observations have been confirmed, as regards this main fact, by other naturalists; and Grimm has met with a species of Chironomus in which the pupæ lay eggs.[50]
Here, then, we have a distinct case of alternation of generations, as characterized by Steenstrup. Probably other cases will be discovered in which insects undeniably in the larval state will be found fertile. Nay, it seems to me possible, if not probable, that some larvæ which do not now breed may, in the course of ages, acquire the power of doing so. If this idea is correct, it shows how the remarkable phenomenon, known as alternation of generations, may have originated.
Summing up, then, the preceding argument, we find among insects various modes of development; from simple growth on the one hand, to well-marked instances of the so-called alternation of generation on the other. In the wingless species of Orthoptera there is little external difference, excepting in size, between the young larva and the perfect insect. The growth is gradual, and there is nothing which would, in ordinary language, be called a metamorphosis. In the majority of Orthoptera, though the presence of wings produces a marked difference between the larva and the imago, the habits are nearly the same throughout life, and consequently the action of external circumstances affects the larva in the same manner as it does the perfect insect.
This is not the case with the Neuroptera. The larvæ do not live under the same conditions as the perfect insects: external forces accordingly affect them in a different manner; and we have seen that they pass through some changes which bear no reference to the form of the perfect insect: these changes, however, are for the most part very gradual. The caterpillars of Lepidoptera have even more extensive modifications to undergo; the mouth of the larva, for instance, being remarkably unlike that of the perfect insect. A change in this organ, however, could hardly take place while the insect was growing fast, and consequently feeding voraciously; nor, even if the change could be thus effected, would the mouth, in its intermediate stages, be in any way fitted for biting and chewing leaves. The same reasoning applies also to the digestive organs. Hence the caterpillar undergoes little, if any, change, except in size, and the metamorphosis is concentrated, so to say, into the last two moults. The changes then become so rapid and extensive, that the intermediate period is necessarily one of quiescence. In some exceptional cases, as in Sitaris (ante, p. 30) we even find that, the conditions of life not being uniform throughout the larval period, the larva itself undergoes metamorphoses.
Owing to the fact that the organs connected with the reproduction of the species come to maturity at a late period, larvæ are generally incapable of breeding. There are, however, some flies which have viviparous larvæ, and thus offer a typical case of alternation of generations.