Fig. 29. Canals of Eozoon.

Highly magnified.

Taking the specimens preserved by serpentine as typical, we now turn to certain other and, in some respects, less characteristic specimens, which are nevertheless very instructive. At the Calumet some of the masses are partly filled with serpentine and partly with white pyroxene, an anhydrous silicate of lime and magnesia. The two minerals can readily be distinguished when viewed with polarized light; and in some slices I have seen part of a chamber or group of canals filled with serpentine and part with pyroxene. In this case the pyroxene or the materials which now compose it, must have been introduced by infiltration, as well as the serpentine. This is the more remarkable as pyroxene is most usually found as an ingredient of igneous rocks; but Dr. Hunt has shown that in the Laurentian limestones and also in veins traversing them, it occurs under conditions which imply its deposition from water, either cold or warm. Gümbel remarks on this:—"Hunt, in a very ingenious manner, compares this formation and deposition of serpentine, pyroxene, and loganite, with that of glauconite, whose formation has gone on uninterruptedly from the Silurian to the Tertiary period, and is even now taking place in the depths of the sea; it being well known that Ehrenberg and others have already shown that many of the grains of glauconite are casts of the interior of foraminiferal shells. In the light of this comparison, the notion that the serpentine and such like minerals of the primitive limestones have been formed, in a similar manner, in the chambers of Eozoic Foraminifera, loses any traces of improbability which it might at first seem to possess."

In many parts of the skeleton of Eozoon, and even in the best infiltrated serpentine specimens, there are portions of the cell-wall and canal system which have been filled with calcareous spar or with dolomite, so similar to the skeleton that it can be detected only under the most favourable lights and with great care. (Fig. 24, supra.) The same phenomena may be observed in joints of Crinoids from the Palæozoic rocks, and they constitute proofs of organic origin even more irrefragable than the filling with serpentine. Dr. Carpenter has recently, in replying to the objections of Mr. Carter, made excellent use of this feature of the preservation of Eozoon. It is further to be remarked that in all the specimens of true Eozoon, as well as in many other calcareous fossils preserved in ancient rocks, the calcareous matter, even when its minute structures are not preserved or are obscured, presents a minutely granular or curdled appearance, arising no doubt from the original presence of organic matter, and not recognised in purely inorganic calcite.

Another style of these remarkable fossils is that of the Burgess specimens. In these the walls have been changed into dolomite or magnesian limestone, and the canals seem to have been wholly obliterated, so that only the laminated structure remains. The material filling the chambers is also an aluminous silicate named loganite; and this seems to have been introduced, not so much in solution, as in the state of muddy slime, since it contains foreign bodies, as grains of sand and little groups of silicious concretions, some of which are not unlikely casts of the interior of minute foraminiferal shells contemporary with Eozoon, and will be noticed in the sequel.

Fig. 30. Eozoon from Tudor.

Two-thirds natural size. (a.) Tubuli. (b.) Canals. Magnified. a and b from another specimen.