"This fact being established, I procured from the quarries near Passau as many specimens of the limestone as the advanced season of the year would permit; and, aided by my diligent and skillful assistants, Messrs. Reber and Schwager, examined them by the methods indicated by Messrs. Dawson and Carpenter. In this way I soon convinced myself of the general similarity of our organic remains with those of Canada. Our examinations were made on polished sections and in portions etched with dilute nitric acid, or, better, with warm acetic acid. The most beautiful results were however obtained by etching moderately thin sections, so that the specimens may be examined at will either by reflected or transmitted light.

"The specimens in which I first detected Eozoon came from a quarry at Steinhag, near Obernzell, on the Danube, not far from Passau. The crystalline limestone here forms a mass from fifty to seventy feet thick, divided into several beds, included in the gneiss, whose general strike in this region is N.W., with a dip of 40°-60° N.E. The limestone strata of Steinhag have a dip of 45° N.E. The gneiss of this vicinity is chiefly grey, and very silicious, containing dichroite, and of the variety known as dichroite-gneiss; and I conceive it to belong, like the gneiss of Bodenmais and Arber, to that younger division of the primitive gneiss system which I have designated as the Hercynian gneiss formation; which, both to the north, between Tischenreuth and Mahring, and to the south on the north-west of the mountains of Ossa, is immediately overlaid by the mica-slate formation. Lithologically, this newer division of the gneiss is characterized by the predominance of a grey variety, rich in quartz, with black magnesian-mica and orthoclase, besides which a small quantity of oligoclase is never wanting. A further characteristic of this Hercynian gneiss is the frequent intercalation of beds of rocks rich in hornblende, such as hornblende-schist, amphibolite, diorite, syenite, and syenitic granite, and also of serpentine and granulite. Beds of granular limestone, or of calcareous schists are also never altogether wanting; while iron pyrites and graphite, in lenticular masses, or in local beds conformable to the great mass of the gneiss strata, are very generally present.

"In the large quarry of Steinhag, from which I first obtained the Eozoon, the enclosing rock is a grey hornblendic gneiss, which sometimes passes into a hornblende-slate. The limestone is in many places overlaid by a bed of hornblende-schist, sometimes five feet in thickness, which separates it from the normal gneiss. In many localities, a bed of serpentine, three or four feet thick, is interposed between the limestone and the hornblende-schist; and in some cases a zone, consisting chiefly of scapolite, crystalline and almost compact, with an admixture however of hornblende and chlorite. Below the serpentine band, the crystalline limestone appears divided into distinct beds, and encloses various accidental minerals, among which are reddish-white mica, chlorite, hornblende, tremolite, chondrodite, rosellan, garnet, and scapolite, arranged in bands. In several places the lime is mingled with serpentine, grains or portions of which, often of the size of peas, are scattered through the limestone with apparent irregularity, giving rise to a beautiful variety of ophicalcite or serpentine-marble. These portions, which are enclosed in the limestone destitute of serpentine, always present a rounded outline. In one instance there appears, in a high naked wall of limestone without serpentine, the outline of a mass of ophicalcite, about sixteen feet long and twenty-five feet high, which, rising from a broad base, ends in a point, and is separated from the enclosing limestone by an undulating but clearly defined margin, as already well described by Wineberger. This mass of ophicalcite recalls vividly a reef-like structure. Within this and similar masses of ophicalcite in the crystalline limestone, there are, so far as my observations in 1854 extend, no continuous lines or concentric layers of serpentine to be observed, this mineral being always distributed in small grains and patches. The few apparently regular layers which may be observed are soon interrupted, and the whole aggregation is irregular."

It will be observed that this acervuline Eozoon of Steinhag appears to exist in large reefs, and that in its want of lamination it differs from the Canadian examples. In fossils of low organization, like Foraminifera, such differences are often accidental and compatible with specific unity, but yet there may be a difference specifically in the Bavarian Eozoon as compared with the Canadian.

Gümbel also found in the Finnish and Bavarian limestones knotted chambers, like those of Wentworth above mentioned ([fig. 36]), which he regards as belonging to some other organism than Eozoon; and flocculi having tubes, pores, and reticulations which would seem to point to the presence of structures akin to sponges or possibly remains of seaweeds. These observations Gümbel has extended into other localities in Bavaria and Bohemia, and also in Silesia and Sweden, establishing the existence of Eozoon fossils in all the Laurentian limestones of the middle and north of Europe.

Fig. 36. Archæospherinæ from Pargas in Finland. (After Gümbel.)

Magnified.