I do not deny that the tubulation is often imperfectly preserved, and that in such cases the casts of the tubuli may appear to be glued together by concretions of mineral matter, or to be broken or imperfect. But this occurs in all fossils, and is familiar to any microscopist examining them. How difficult is it in many cases to detect the minute structure of Nummulites and other fossil Foraminifera? How often does a specimen of fossil wood present in one part distorted and confused fibres or mere crystals, with the remains of the wood forming phragmata between them, when in other parts it may show the most minute structures in perfect preservation? But who would use the disintegrated portions to invalidate the evidence of the parts better preserved? Yet this is precisely the argument of Professors King and Rowney, and which they have not hesitated in using in the case of a fossil so old as Eozoon, and so often compressed, crushed, and partly destroyed by mineralization.
I have in the above remarks confined myself to what I regard as absolutely essential by way of explanation and defence of the organic nature of Eozoon. It would be unprofitable to enter into the multitude of subordinate points raised by the authors, and their theory of mineral pseudomorphism is discussed by my friend Dr. Hunt; but I must say here that this theory ought, in my opinion, to afford to any chemist a strong presumption against the validity of their objections, especially since it confessedly does not account for all the facts, while requiring a most complicated series of unproved and improbable suppositions.
The only other new features in the communication to which this note refers are contained in the “supplementary note.” The first of these relates to the grains of coccolite in the limestone of Aker, in Sweden. Whether or not these are organic, they are apparently different from Eozoon Canadense. They, no doubt, resemble the grains referred to by Gümbel as possibly organic, and also similar granular objects with projections which, in a previous paper, I have described from Laurentian limestones in Canada. These objects are of doubtful nature; but if organic, they are distinct from Eozoon. The second relates to the supposed crystals of malacolite from the same place. Admitting the interpretation given of these to be correct, they are no more related to Eozoon than are the curious vermicular crystals of a micaceous mineral which I have noticed in the Canadian limestones.
The third and still more remarkable case is that of a spinel from Amity, New York, containing calcite in its crevices, including a perfect canal system preserved in malacolite. With reference to this, as spinels of large size occur in veins in the Laurentian rocks, I am not prepared to say that it is absolutely impossible that fragments of limestone containing Eozoon may not be occasionally associated with them in their matrix. I confess, however, that until I can examine such specimens, which I have not yet met with, I cannot, after my experience of the tendencies of Messrs. Rowney and King to confound other forms with those of Eozoon, accept their determinations in a matter so critical and in a case so unlikely.[AU]
[AU] I have since ascertained that Laurentian limestone found at Amity, New York, and containing spinels, does hold fragments of the intermediate skeleton of Eozoon. The limestone may have been originally a mass of fragments of this kind with the aluminous and magnesian material of the spinel in their interstices.
If all specimens of Eozoon were of the acervuline character, the comparison of the chamber-casts with concretionary granules might have some plausibility. But it is to be observed that the laminated arrangement is the typical one; and the study of the larger specimens, cut under the direction of Sir W. E. Logan, shows that these laminated forms must have grown on certain strata-planes before the deposition of the overlying beds, and that the beds are, in part, composed of the broken fragments of similar laminated structures. Further, much of the apparently acervuline Eozoon rock is composed of such broken fragments, the interstices between which should not be confounded with the chambers: while the fact that the serpentine fills such interstices as well as the chambers shows that its arrangement is not concretionary. Again, these chambers are filled in different specimens with serpentine, pyroxene, loganite, calcareous spar, chondrodite, or even with arenaceous limestone. It is also to be observed that the examination of a number of limestones, other than Canadian, by Messrs. King and Rowney, has obliged them to admit that the laminated forms in combination with the canal-system are “essentially Canadian,” and that the only instances of structures clearly resembling the Canadian specimens are afforded by limestones Laurentian in age, and in some of which (as, for instance, in those of Bavaria and Scandinavia) Carpenter and Gümbel have actually found the structure of Eozoon. The other serpentine-limestones examined (for example, that of Skye) are admitted to fail in essential points of structure; and the only serpentine believed to be of eruptive origin examined by them is confessedly destitute of all semblance of Eozoon. Similar results have been attained by the more careful researches of Prof. Gümbel, whose paper is well deserving of study by all who have any doubts on this subject.